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Motivation Nonpolynomial and nonquadratic PDEs describe complex dynamical processes in science
and engineering; e.g., the cubic FitzHugh-Nagumo model describes the activation and deactivation dy-
namics of a spiking neuron; the cubic Brusselator model predicts oscillations in chemical reactions; and
the quartic model of the nonadiabatic tubular reactor describes the evolution of the species concentra-
tion and temperature. Transforming, or lifting, such systems into quadratic form has been integrated
into model reduction in [?, ?] and to obtain better variables for model learning [?]. In all of these, the
lifting transformation to quadratic form was done by hand on either the ODE or PDE. This is tedious,
error-prone, and often results in suboptimal lifted transformations.
Polynomialization Module Polynomialization of a PDE is the process of finding a transformation that
turns a nonpolynomial PDE into a system with possibly high-order polynomial drift. We developed
a polynomialization module that takes as input the symbolic form of a non-polynomial PDE and
generates a polynomial PDE in a new set of variables. The output is the symbolic polynomial form.
Quadratization Module Quadratization turns a PDE system with higher-degree polynomial drift into
systems with quadratic drift. The inputs of our quadratization module are the symbolic form of the
PDE, and the output is a quadratic PDE alongside a new set of variables. To obtain a quadratic
form, it is often required to add new variables to the system. The set of variables introduced is
called a quadratization. For illustration, consider the PDE describing the evolution of the space and
time-varying function u(t, x) as

ut = uxu
2 (1)

To quadratize (1) we introduce the variable y := u2 and calculate its first derivative in x: yx = 2uxu,
which allows us to write

yt = 2uxu
3 = 2uxuy = yxy and ut = uxy. (2)

This quadratic equation in u(t, x) and y(t, x) is the output of the quadratization module, so that the
set {u2} is a quadratization for (1).
Functionalities of the Integrated Discovery System We developed an algorithm and software that
finds quadratizations of PDEs. The presented algorithm searches a combinatorial tree of possible
transformations, uses branch-and-bound techniques to curb its computational complexity, and outputs
a (sometimes minimal) set of variables that effectively quadratize a PDE system. To the best of our
knowledge, these are the first results of automated quadratization for PDEs. The module is further
being equipped with a functionality to deal with non-autonomous systems with differentiable forcing
functions.
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