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Automating scientific discovery, in particular, discovering scientific equations that best fit the experiment 
data, has been a grand goal of AI dating back to its founders (Herbert Simon et. al.) but remains a holy grail. 
Indeed, much effort has been made, especially in symbolic equation finding. This includes search-based 
methods, genetic programming, reinforcement learning, deep function approximation, and integrated 
systems. Most endeavors treat the task of equation finding as a standard learning task -- they directly search 
for the best equation in the full hypothesis space involving all the independent variables that fits a pre-
collected, static dataset. This type of search can be challenging because the search space of all candidate 
equations is exponentially large. 

Recently, a promising direction has been to accelerate AI-driven scientific discoveries using scientific 
approaches. This approach has been pioneered by the BEACON system [1], followed by a series of works 
such as Inductive Logic Programming [2], and Control Variable Genetic Programming [3]. For example, to 
discover the ideal gas law pV = nRT, the scientific approach first holds n (gas amount) and T (temperature) 
as constants in controlled variable experiments and finds p (pressure) is inversely proportional to V 
(volume). This results in a reduced-form equation pV = constant. This reduced-form equation then can be 
expanded to include n, again using controlled experiments in which only pV and n are allowed to vary. Such 
processes repeat until the full equation is found. The discovery of the first few reduced-form equations can 
be significantly cheaper than other approaches, because the searches are in reduced spaces involving a small 
number of independent variables. As a result, this approach has the potential to supercharge state-of-the-art 
approaches in modeling complex scientific phenomena with many interlocking contributing factors. 

Nevertheless, in real-world applications, it is often not the number of independent variables, but the 
intertwined nature of many physical processes, that dominate the complexity of a physical system. For 
example, dendritic solidification refers to the natural phenomenon in which solid-state materials (e.g., ice) 
emerge from supercooled liquids (e.g., water). It involves several intertwined processes, more precisely, 
phase separation, temperature dependence, diffusivity along the liquid-solid interfaces, and the differences 
in the mobility rates among interfaces of different directions. The simultaneous existence of all these 
physical processes overwhelms state-of-the-art learning algorithms that aim to learn the full-fledged model 
in one shot. 

We propose scientific process discovery using scientific approaches. The key idea is to drive the 
discovery using an integrated AI system composing of hypothesis generator, an experiment designer, and a 
model learner. Our proposed approach breaks down the learning of such complex phenomena into multiple 
stages. In each stage, a single physical process is learned. For example, in learning dendritic solidification, 
we first restrict our search within the space of simple phase separation models that do not take into account 
complicated factors (e.g., temperature dependence, diffusivity, etc.). Then, we start to refine this model by 
introducing additional physical processes at play, one at a time. We first notice the phase separation process 
depends on temperature, then model the diffusivity along the liquid-solid interfaces, and then the directional 
differences in the growth rate. In each stage, we employ three closely collaborated AI-empowered agents: 

(1) Hypothesis generator: The hypothesis generator criticizes the current model, suggesting that 
certain constants are better expanded into sub-processes. It accomplishes this by fitting the current 
model to different portions of the experiment data and noticing the fitted values of constants vary 
substantially. This implies the possibility that the constant is a sub-process. 

(2) Experiment designer: The experiment designer decides the best experiment data which best 
reveals the dependent factors of a sub-process at-study. For example, the experiment designer will 
actively collect experiment data relating to solidifications at interfaces of different directions when 
we model the directional dependence of diffusivity in the dendritic solidification process. 

(3) Model learner: The model learner expands a constant in the current model into a sub-process. It 
employs various machine learning algorithms in the search of the best sub-process.  
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