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Abstract

Due to the lack of a physics-grounded dataset, and
the limitation of the seemingly correct human pref-
erences, existing supervised fine-tuning and prefer-
ence optimization methods for large language models
(LLMs) struggle with complex physical systems. To
address these challenges, we propose a new paradigm,
Physics-Informed Fine-Tuning (PIFT). This ap-
proach consists of three main steps: 1. creating a
dataset using world simulators, 2. performing World
Knowledge Distillation, and 3. conducting World Pref-
erence Learning. Experiments on climate-related prob-
lems demonstrate PIFT’s effectiveness, with our mod-
els outperforming state-of-the-art models like GPT-4o
and Claude-3.5. Our full paper has been made publicly
available (Lyu et al., 2024).

Large language models (LLMs) demonstrate robust
analysis and reasoning capabilities in daily scenarios.
These models have shown proficiency in addressing sim-
ple school-level scientific problems (Cobbe et al., 2021;
Hendrycks et al., 2021). However, our preliminary exper-
iments reveal that LLMs cannot solve problems derived
from complex physical simulations, such as soft and rigid
bodies, fluid dynamics, climate science, and epidemiology.

Supervised fine-tuning methods for LLMs predomi-
nantly rely on 1. leveraging existing corpora for additional
dataset construction (Brown et al., 2020), 2. knowledge dis-
tillation from more advanced models (Sanh et al., 2019),
and 3. rule-based sampling of model outputs (Bai et al.,
2022). Scholars further enhanced fine-tuned LLMs using
preference learning, improving their instruction-following
ability (Ouyang et al., 2022). These approaches involve la-
beling the preferences of different responses, either from
human feedback or from another LLM (Lee et al., 2023).

However, our preliminary results revealed that both
above techniques fail to answer questions that involve com-
plex physics. We attribute the failures to: 1. Existing train-
ing datasets (Sun et al., 2023; Wang et al., 2024; Zhong
et al., 2023; Arora, Singh, and Mausam, 2023) primar-
ily cover school-level scientific problems. These scenarios,
while offering clear-cut solutions, often fail to capture real-
world complexities. 2. Existing methods align LLMs with
human preferences, which, while often intuitively correct,
may not always adhere to true physical laws (Ouyang et al.,
2022).

These limitations motivate us to enable physics-
grounded LLMs. To achieve this goal, we propose Physics-
Informed Fine-Tuning (PIFT) technology, which includes
3 steps, as shown in Figure 1. We first construct a com-
prehensive dataset involving complex and typical physi-
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Figure 1: The 3 steps of PIFT pipeline.

cal systems in the real world with corresponding simu-
lators. The physical systems include rigid- and soft-body
dynamics (Todorov, Erez, and Tassa, 2012), fluid dynam-
ics (Kochkov et al., 2021; Dresdner et al., 2022), climate
science (Niu et al., 2024), and epidemiology (Wu et al.,
2023). We create two types of questions: multiple-choice
questions and open-ended questions. The correct choice for
Multiple-choice questions is generated during the question
synthesis. For open-ended questions, such as those involv-
ing planning and causal inference, we prompt a critic LLM
to use domain-specific simulators to evaluate the quality
of responses generated by the LLM being fine-tuned. Ad-
ditionally, we sample a portion of these evaluation scores
for human expert validation, ensuring the validity of our
pipeline.

Secondly, we design World Knowledge Distillation
(WKD), where we prompt LLMs to analyze problems us-
ing results from world simulators and derive detailed so-
lution steps correspondingly. Then, we filter the generated
solutions to retain only those that align with correct answers
and use these filtered solutions to fine-tune the target LLM.

Lastly, we propose World Preference Learning
(WPO), where the critic LLM utilizes world simula-
tors to rank different responses for open-ended problems.
This ranking procedure involves designing proper domain-
specific criteria based on the simulated results, such as
ranking the cost or reward in the planning settings. We then
employ Direct Preference Optimization (DPO) (Rafailov
et al., 2024) to train the target LLM with these ranked re-
sponses.

Preliminary experiments on climate problems demon-
strate our methods’ effectiveness, while untrained
Llama-3.1-8B-Instruct has a 32.2% accuracy,
GPT-4o shows 51.1% and Claude-3.5 shows 37.8%.
Llama-3.1-8B-Instruct trained with WKD reaches
47.8% compared with 43.3% if just trained with correct
choices. Additional WPO increases this score to 55.6%.
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