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Extended abstract
With computational modelling and simulation taking equal
reign, next to theory and experimentation, as a paradigm of
scientific discovery, many formal languages for describing
natural phenomena have been invented. Kappa (Boutillier
et al. 2018) and BioNetGen (Harris et al. 2016) are lan-
guages for modelling biochemical systems, including signal
transduction, metabolic, and genetic regulatory networks.
MØD (Andersen et al. 2014) is a graph-based language
for describing chemical reaction systems. MedPath (Tra-
jano et al. 2021) is a language for describing medicare care
pathways. These formal languages essentially rely on vari-
ous formal models from theoretical computer science to pre-
cisely describe the computation a natural system performs.
For instance, graph rewriting systems are well suited for
simulating chemical systems (Andersen et al. 2014), while
qualitative networks, process algebra, Petri nets, and state
machines are well suited for simulating gene regulatory and
protein-protein interaction networks in biology (Fisher and
Henzinger 2007). Relying on formal models has clear ben-
efits: scientific findings become precise and unambiguous,
can be simulated and compared with data, and can be anal-
ysed and verified (Konur 2023).

Unfortunately, formal languages are at odds with the
modern-day machine-learning approaches to discovery.
Most of these approaches operate on vectorised representa-
tions, and formal language does not fit this paradigm. While
there is no doubt that these vector-based approaches have
been effective, they are also not very well suited for sci-
entific discovery. Namely, they are black boxes, and this
has two significant consequences. First, whatever they dis-
cover about the underlying physical process remains opaque
and cannot be verified. Second, the purely data-driven ap-
proaches are prone to learning shortcuts that perform well
on training data but fail to generalise beyond.

In this talk, I will outline our alternative vision for data-
driven discovery compatible with formal languages. Our
vision builds upon program synthesis, a field of machine
learning concerned with learning programs from data and/or
demonstrations. Approaching computational discovery from
a program synthesis perspective is attractive first because
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it makes it possible to make discoveries in the formal lan-
guages outlined above. These formal languages can be seen
as simple programming languages, and program synthesis
techniques induce models in arbitrary programming lan-
guages provided by the users. Second, program synthe-
sis techniques make it easy to incorporate expert knowl-
edge, both quantitative and qualitative. Third, such a flexible
language for expressing knowledge makes integrating data
from different sources and modalities easier. Fourth, pro-
gram synthesis techniques are data-efficient which is impor-
tant as big data is a luxury. Finally, formal languages make
keeping the experts in the loop significantly easier as every
intermediate model or conjunction is understandable.

The potential of program synthesis for computational dis-
covery has already been demonstrated in executable biol-
ogy (Koksal et al. 2013; Köksal et al. 2017; Fisher et al.
2015) and chemistry (Dalchau et al. 2015; Cardelli et al.
2017). However, each success was achieved with an ad hoc
synthesis method and required a fresh start. Therefore, when
moving from one problem to another, the synthesis tech-
niques cannot be readily reused.

Our vision is to build an universal computational discov-
ery engine where the formal languages for science form a
foundation. The engine should be universal because it sup-
ports various formal languages with dedicated techniques.
In my talk, I will argue why this combination makes sense,
outline our vision, and discuss recent progress.

Relevant references
As this project has recently started, we do not yet have ref-
erences to show for our work. We are, however, running two
projects on scientific discovery at TU Delft, and our col-
laborators have substantial experience in computational dis-
covery (Koksal et al. 2013; Köksal et al. 2017; Fisher et al.
2015; Fisher, Piterman, and Bodik 2014) We have substan-
tial experience in program synthesis (Hocquette, Dumancic,
and Cropper 2023; Cropper and Dumancic 2022; Dumancic,
Guns, and Cropper 2021). We hope you will recognise that
we can be productive participants at the Symposium.
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Köksal, A. S.; Beck, K.; Cronin, D. R.; McKenna, A.; Camp,
N. D.; Srivastava, S.; MacGilvray, M. E.; Bodı́k, R.; Wolf-
Yadlin, A.; Fraenkel, E.; Fisher, J.; and Gitter, A. 2017. Syn-
thesizing Signaling Pathways from Temporal Phosphopro-
teomic Data. bioRxiv.
Koksal, A. S.; Pu, Y.; Srivastava, S.; Bodik, R.; Fisher, J.;
and Piterman, N. 2013. Synthesis of biological models from
mutation experiments. SIGPLAN Not., 48(1): 469–482.

Konur, G. M. . K. N., S. 2023. Verifiable biology. Journal
of the Royal Society, 20(202).
Trajano, I. A.; Ferreira Filho, J. B.; de Carvalho Sousa, F. R.;
Litchfield, I.; and Weber, P. 2021. MedPath: A process-
based modeling language for designing care pathways. In-
ternational Journal of Medical Informatics, 146: 104328.


