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The author’s attempts in 1990s
Many attempts for automated scientific discovery have been
made since 1970s such as MOLGEN (Friedland 1979) and
AM (Lenat 1983). Although the computational resources at
that time were limited, some researchers pointed out the im-
portance of experimentation in machine discovery (Kulkarni
and Simon 1990).

As the attempts for automated scientific discovery in
plane geometry, the author proposed DST (Murata et al.
1994) and EXPEDITION (Murata et al. 1996). DST gen-
erates figures by changing the angles of a triangle and draw-
ing additional lines, and extracts numerical formulas by ob-
serving generated figures. Then the system transforms the
formulas by eliminating subproducts that are generated by
the addional lines. The transformation is constrained by the
number of subproducts in order to avoid the explosive in-
crease of formulas. With little basic knowledge such as the
definition of the congruence of triangles and the definition
of fundamental trigonometric functions, DST successfully
rediscovers many trigonometric formulas and geometrical
theorems including the Pythagorean theorem.

Figure 1: DST Figure 2: EXPEDITION

EXPEDITION also generates figures by drawing addi-
tional lines on a circle. Then the system obtains numerical
values of the distances between the pairs of two points and
the measures of angles in order to find the candidates of ge-
ometrical theorems inductively. In order to make sure that
the candidates are not just coincidence, the system gener-
ates other similar figures and checks whether the candidates
also hold in the new figures. Based on such simple mech-
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anism, EXPEDITION successfully rediscovers geometrical
theorems such as Power theorems and Thales’ theorem.

Future directions
In order to design effective experiments for obtaining data,
counterfactual machine learning (CFML) can be a promis-
ing approach. The notion of counterfactual comes from the
research community of causal inference. The ability to learn
with counterfactuals and generalize to unseen environments
is considered as a significant component of general AI.
There are some methods for extending CFML to graphs
(Guo et al. 2023) (Prado-Romero et al. 2024). Since rela-
tions of edges and angles can be represented as graphs, it is
expected that such methods can be used for designing exper-
iments for automated scientific discovery.
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