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Equation discovery is the task, given a data set D ∈ Rm×n, to find for m examples the
equation f(x, c) = y mapping the independent variables xi|1 ≤ i ≤ n − 1 and the constants
c to the dependent variable y, where the functional form of the equation is to be determined
during the process. The search space is either implicitly given or given by a grammar. The
idea of this work is to decompose the equation f(x) = g(x) ◦ h(x) into simpler parts, as
done already, in different ways, in the BACON and AIFeynman systems. In recent years the
usage of pretrained equation discovery systems have become popular. These systems use
a neural architecture to embed the data set and train to predict the equation that generated
the data set in a zero-shot way. Residuals for equation discovery (RED) combines the ideas
of decomposition and the ability of zero-shot prediction. RED calculates and optimizes the
residuals of the data set for a subequation X of the initial equation. In other words, it computes
what that subequation should have yielded for each data point for the entire formula to predict
the output correctly. These residuals y′ formulate a new problem f ′(x, c) = y′, and the equation
discovery system can predict a solution. If the new solution’s error is lower than that of the old
solution, the new solution can replace X in the original equation. By calculating residuals,
the system can disentangle the original task into simpler tasks and interactively discover the
original equation. Calculating the residuals is as fast as evaluating the initial equation when
the equation is expressed in a syntax tree, where leaf nodes are constants or variables and the
inner nodes are operators. For each operator, we define how it should behave when the syntax
tree is evaluated or a residual is calculated. The equation y = x1 + 2 can be represented as a
Y-node (id:0) connected to a Plus node (id:1) with child nodes of type Variable with the value x1
(id:2) and Constant with the value 2 (id:3). If the residual for the node with id:2 is calculated, the
syntax tree evaluates the equation R2 = y − x1. The residual cannot be calculated for nodes
that are the descendant of an operation that is not bijective (e.g., sin). We show, for the model
NeSymReS [1] on the Feynman equations with up to two variables as reported in SRBench
[2], that RED improves the median mean squared error from 0.89 (IQR 0.06-9.21) to 0.003
(IQR 0.001 - 0.08). While RED is independent of the functionality of the pre-trained equation
discovery system, it depends on an initial solution, which has to enable the disentanglement.
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