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Figure 1. Problem setup. The state variable x(t) = (p(t), q(t)) includes information on momentum p and position q.

Problem setup: Given the state of a system at previous step x(ti − dt), we want to predict x(ti)
using data-driven models. I.e., design a neural network φ such that x(ti) ≈ φ(x(ti − dt)) and and

satisfies the following properties:

Permutation equivariance

conservation of energy

volume-preserving in the phase space

A block containing a list

For a continuously differentiable symplectic map φ, there exists a (locally) Hamiltonian system

ẋ = J−1∇H(x)

Conservation of energy H(x) = H(φ(x))
Volume-preserving in the phase space |A| = |φ(A)|

Our first goal reduced to approximate a symplectic map with easily parameterizable model.

Symplectic networks (SympNets)
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Ln is symplectic. We will refer to it as symplectic linear module.

Theorem: L5 is the set of all linear symplectic maps. In other words, any symplectic matrix

can be factorized into no more than 5 unit triangular matrices.
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Nup, Nlow are symplectic. We will refer to them as symplectic activation module.

We will refer to the composition of Ln, Nup and Nlow as LA-SympNet.

Theorem: Under some mild conditions, LA-SympNets can approximate arbitrary symplectic

maps and their derivatives.

Gradient module (auxiliary):
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where T and V are standard fully-connected neural networks.

We will refer to the composition of Gup and Glow as G-SympNet.

Theorem: Under some mild conditions, G-SympNets can approximate arbitrary symplectic

maps and their derivatives.

Figure 2. Architecture of SympNets. The SympNet can be seen as the neural network with a specific lower/upper

triangular-type connection pattern, which guarantees symplecticity.

Symplectic graph neural networks (SGNNs)

The second goal is to embed permutation equivariance into the previous architecture via graph

neural networks. Our strategy is to modify the existing linear and gradient module.
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For large particle systems it’s more nature to exploit the graph structure in the data by

parameterizing V or T as graph neural networks.

Each node in the graph stores the position and momentum of a single particle.

We build the graph based on the distance between particles: If the distance between two

particles are within a cutoff radius rc, we build an edge for them.

A is the adjacency matrix and e are spring constants which can be either prefixed or trainable.

Here V and T can be interpreted as the potential and kinetic energy of the system.

Prediction of dynamics

We consider argon particles governed by Lennard-Jones potential in 2d. We generate data with

time step 10−14s, then downsample to make dt = 10−13s. Note if we simulate data directly with

dt = 10−13s, the energy of the system would explode using the same numerical integrator.

Train with x(0), x(dt), · · · , x(1000dt). Goal: Predict x(1001dt), x(1002dt), · · · , x(2000dt)
NVE (microcarnonical ensemble) energy should be conserved.

Number of particles = 2000.

19.7% percent reduction in prediction time compared to the numerical integrator.
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Figure 3. Statistical quantities of the predicted trajectories by GNN, HGNN and SGNN.
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Multi-agent optimal control formulation: x(s) denotes the positions of all agents.

min{
∫ T

0
l(x(s), ẋ(s)) + εβa(h(x(s)))ds : x(0) = x0, x(T ) = xT }

Dimension is Mm (M = # agents, m is the dimension of the physical space)

The optimal trajectory satisfies the Hamiltonian ODE with H directly computable from l via the
Legendre transform.

We apply SympNet to solve the Hamilton’s ODE with initial and terminal conditions x0 and xT .
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Figure 4. Path planning of 128 drones with four obstacles. We plot the predicted positions of 128 drones at time

t = 0, 1
3,

2
3, 1. The four black circles represent the four obstacles, and the colored circles represent the drones.
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