Generative Adversarial Symmetry Discovery

Jianke Yang*, Robin Walters†, Nima Dehmamy‡, Rose Yu*

* University of California San Diego, San Diego, CA † Northeastern University, Boston, MA ‡ IBM Research, Boston, MA

jyj065@ucsd.edu, r.walters@northeastern.edu, Nima.Dehmamy@ibm.com, roseyu@ucsd.edu

Generative Adversarial Training Architecture

Existing equivariant neural networks rely on explicit knowledge about symmetry, which is sometimes unavailable. Our work aims to discover unknown symmetry directly from data.

Invariance, Equivariance and Data Distribution

Invariance and equivariance have become an important and intuitive bias in deep learning architectures. A function \(f: X \rightarrow Y \) is invariant to a group \(G \) if \(f(g \cdot x) = f(x) \) for all \(g \in G, x \in X \). It is \(G \)-equivariant if \(f(g \cdot x) = g \cdot f(x) \) for \(g \in G, x \in X \). From another perspective, invariant or equivariant transformations preserve the data distribution.\[p_f(x, y) = p_{g \cdot f}(x, y) \]

Comparison of Symmetry Discovery Methods

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete group</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Continuous group</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Subset of given group</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Subset of unknown group</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

Different approaches with deep learning have been developed to discover symmetries from data. Our approach (LieGAN) is the first to address the discovery of such a variety of symmetries including discrete group, continuous group, and subset of given or unknown group.

Our Contributions

We propose the framework of Lie algebras Generative Adversarial Network (LieGAN). Combining generative adversarial training and the theory of Lie groups, our model:

- Learns a distribution over symmetry transformations and produces a transformed data distribution that is indistinguishable from original distribution.
- Discovers various general linear symmetries in datasets, including the rotation group \(SO(3) \)^+.\[\mathbb{R}^3 \rightarrow \mathbb{R}^3 \]
- Can be combined with customized equivariant neural networks to construct arbitrary group equivariant models and achieve excellent performance in predictive tasks.

Our full paper is available at: https://arxiv.org/abs/2302.00286

Problem

How to design a data-driven approach to automatically discover symmetries, i.e. invariances and equivariances, in a predictive task?

Our Substitutions

Task #2: Top Quark Tagging

Task: Binary classification between top quark jets and lighter quarks. The input is the four-momenta of the constituents of the particle jets.

Discovery: LieGAN discovers the symmetry of restricted Lorentz group, \(SO(1, 3)^+ \). It learns the boosts along different spatial dimensions (row 2 of \(\mathbb{R}^3 \)) and the rotations within spatial dimensions (row 3 of \(\mathbb{R}^3 \)).

The figure shows how the data distribution is transformed by one group element sampled from LieGAN.

References

Acknowledgements
This work was supported in part by the U.S. Department Of Energy, Office of Science, U.S. Army Research Office under Grant W911NF-20-1-0334, Google Faculty Award, Amazon Research Award, and NSF Grants #2134174, #2107526 and #2134176.