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Deep Learning Lacks Deep Reasoning

● Exciting progress in deep learning

2

● Human learning (discovery) is better!

○ Learning from an incredibly small set of “surprising” 

samples

○ Interpretable, elegant models & equations

○ Active exploration with a purpose

○ Machine learning based on Stochastic Gradient 

Descend (SGD) hardly captures its essence

[AlphaFold]

F = G
𝑚1𝑚2

𝑟2 2.1?



Reasoning Powered Learning using scientific approaches
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This talk: explore how “control variable experiments” as a classical 

scientific approach expedites scientific machine learning.

Newton and Einstein’s examples show the role of active reasoning in scientific discoveries 

(learning).

• What new hypothesis can explain the data?

• What new experiments we can design to validate the hypothesis?

• What conclusions we can draw from the observations?



Symbolic regression

● Learning a symbolic expression from data

○ A good benchmark mimicking scientific discovery process.

● Incredibly difficult because of the large search space of all 

possible expressions.

● Can you guess which equation 𝑦 = 𝑓 𝑥1, 𝑥2, 𝑥3 generates the 

data shown in the left table?
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X1 X2 X3 Y

2.5 1.0 9.5 12

3.0 -1.0 4.0 1

1.6 3.5 5.2 10.8

1.8 1.0 3.2 5

7.1 8.6 3.8 64.9

1.7 1.0 2.3 4

2.5 2.6 3.1 9.6

8.9 1.1 2.0 11.8

4.2 -1.0 2.2 -2

5.8 1.0 7.2 13

1.6 5.7 1.2 10.3

9.7 -1.0 1.7 -8



Symbolic regression

● Learning a symbolic expression from data

○ A good benchmark mimicking scientific discovery process.

● Incredibly difficult because of the large search space of all 

possible expressions.

● Can you guess which equation 𝑦 = 𝑓 𝑥1, 𝑥2, 𝑥3 generates the 

data shown in the left table?

● How about if I only ask you to look into these rows?

𝑦 = 𝑥1 + 𝑥3?
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X1 X2 X3 Y

2.5 1.0 9.5 12

1.8 1.0 3.2 5

1.7 1.0 2.3 4

5.8 1.0 7.2 13



Symbolic regression

● Learning a symbolic expression from data

○ A good benchmark mimicking scientific discovery process.

● Incredibly difficult because of the large search space of all 

possible expressions.

● Can you guess which equation 𝑦 = 𝑓 𝑥1, 𝑥2, 𝑥3 generates the 

data shown in the left table?

● How about if I only ask you to look into these rows?

𝑦 = 𝑥1 + 𝑥3?

● How about these rows?

𝑦 = −𝑥1 + 𝑥3?
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X1 X2 X3 Y

3.0 -1.0 4.0 1

4.2 -1.0 2.2 -2

9.7 -1.0 1.7 -8



Symbolic regression

● Learning a symbolic expression from data

○ A good benchmark mimicking scientific discovery process.

● Incredibly difficult because of the large search space of all 

possible expressions.

● Can you guess which equation 𝑦 = 𝑓 𝑥1, 𝑥2, 𝑥3 generates the 

data shown in the left table?

● How about if I only ask you to look into these rows?

𝑦 = 𝑥1 + 𝑥3?

● How about these rows?

𝑦 = −𝑥1 + 𝑥3?

● Maybe the equation is:

𝑦 = 𝑥2𝑥1 + 𝑥3?         
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X1 X2 X3 Y

2.5 1.0 9.5 12

3.0 -1.0 4.0 1

1.8 1.0 3.2 5

1.7 1.0 2.3 4

4.2 -1.0 2.2 -2

5.8 1.0 7.2 13

9.7 -1.0 1.7 -8
INDEED!

Red and blue data are two control variable experiment trials 

(X2 controlled)!

Control variable experiments simplify symbolic regression!



Control Variable Experiments

● Control variable experimentation – a 

classic procedure widely implemented and 

proven useful in science.

● Controlled variables: take the same value in 

a trial, but vary in values across trials

● Free variables: values change within a trial

● Ground-truth equation: the hidden equation 

that generates the data

● Reduced form equation: Under a controlled 

experiment, the data looks “as if” generated 

by the reduced equation, in which controlled 

variables are replaced with constants.
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x1 x2 x3 x4 y

0.3 0.5 0.1 0.7 -0.32

0.6 0.5 0.1 0.7 -0.29

0.2 0.5 0.1 0.7 -0.33

0.9 0.5 0.1 0.7 -0.26

(c) Trial T1

controlled

x1 x2 x3 x4 y

0.6 0.3 0.8 0.2 0.42

0.1 0.3 0.8 0.2 0.02

0.2 0.3 0.8 0.2 0.10

0.9 0.3 0.8 0.2 0.66

(d) Trial T2

controlled

-
× ×

x1 x3 x2 x4

(a) Ground-truth expression

C2

C1

(b) Reduced form after 
controlling x2, x3 ,x4

-
×

x1



x1 x2 x3 x4 yx1 x2 x3 x4 yx1 x2 x3 x4 yx1 x2 x3 x4 y

Control Variable Genetic Programming (CVGP)
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x1 x3 x2 x4

-
× C2

x1 C1

-
× ×

x1 x3 x2 C5

-
× ×

x1 C3 x2 C4

x1 x2 x3 x4 y

0.3 0.5 0.1 0.7 -.32

0.6 0.5 0.1 0.7 -.29

0.2 0.5 0.1 0.7 -.33

0.9 0.5 0.1 0.7 -.26

(b) Control x3,x4

x1 x2 x3 x4 y

0.6 0.1 0.8 0.4 0.44

0.4 0.9 0.8 0.4 0.04

0.3 0.2 0.8 0.4 0.16

0.7 0.4 0.8 0.4 0.40

(c) Control x4

x1 x2 x3 x4 y

0.7 0.8 0.1 0.2 -.09

0.5 0.4 0.6 0.2 0.22

0.2 0.1 0.9 0.2 0.16

0.3 0.5 0.1 0.2 -.07

x1 x2 x3 x4 y

0.2 0.4 0.2 0.7 -.24

0.9 0.3 0.5 0.5 0.30

0.5 0.4 0.8 0.1 0.36

0.1 0.8 0.7 0.6 -.41

(d) No control(a) Control x2,x3,x4

Found by GP
Extended from previous 

reduced-form equations 

using GP



Experiment Results
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Median (50%) and 75%-quantile NMSE values of the symbolic expressions found by all the algorithms 

on several noisy benchmark datasets. Our CVGP finds symbolic expressions with the smallest NMSEs. 



Cahn-Hilliard:

𝜕𝑢

𝜕𝑡
= ∇ 𝑀∇

1

𝑁

𝛿𝐹

𝛿𝑢

Allen-Cahn:
𝜕𝑣

𝜕𝑡
= −𝐿

𝛿𝐹

𝛿𝑣

Match?

Simulation

Experiment

Physics Model

Discover New Physics from Data

Simulation
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Physics Knowledge 

Discovery



Cahn-Hilliard:

𝜕𝑢

𝜕𝑡
= ∇ 𝑀∇

1

𝑁

𝛿𝐹

𝛿𝑢

Allen-Cahn:
𝜕𝑣

𝜕𝑡
= −𝐿

𝛿𝐹

𝛿𝑣

Match?

Simulation

Experiment

Physics Model

Discover New Physics from Data

Simulation

Can machine learning automatically discover new science?
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Physics Knowledge 

Discovery



NeuraDiff: High Level Idea
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Time 𝑡0

Encoder(w) 
Video
Frame

Append locational embedding
Decoder(w) 

Recognition NetTime 𝑡0 + 𝑇

Encoder(w) 
Video
Frame

Append locational embedding

Decoder(w) 

In-situ video frames



NeuraDiff: High Level Idea
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Simulate for T steps, using phase field model 

Stitch with annotation

Neural Diff 
Equation ……

𝑐𝑣
∗ (𝑡0 )𝑐𝑖

∗ (𝑡0 ) 𝜂∗(𝑡0)

𝜂∗∗(𝑡0)

Copy

Neural Diff Equation Net
2. Simulated field variables

3. Recognized field variables

𝑐𝑣
∗ (𝑡0 )𝑐𝑖

∗ (𝑡0 )

Neural Diff 
Equation

Time 𝑡0

Encoder(w) 
Video
Frame

Append locational embedding
Decoder(w) 

Recognition NetTime 𝑡0 + 𝑇

Encoder(w) 
Video
Frame

Append locational embedding

Decoder(w) 

In-situ video frames



NeuraDiff: High Level Idea
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Simulate for T steps, using phase field model 

Stitch with annotation

Neural Diff 
Equation ……

𝑐𝑣
∗ (𝑡0 )𝑐𝑖

∗ (𝑡0 ) 𝜂∗(𝑡0)

𝜂∗∗(𝑡0)

Copy

Neural Diff Equation Net 1. Annotation

2. Simulated field variables

3. Recognized field variables

Triage
Loss function penalizes 
the mismatch among
predictions from neural 
differential eqn net (2), 
recognition net (3) and 
annotation (1).

𝑐𝑣
∗ (𝑡0 )𝑐𝑖

∗ (𝑡0 )

Neural Diff 
Equation

Time 𝑡0

Encoder(w) 
Video
Frame

Append locational embedding
Decoder(w) 

Recognition NetTime 𝑡0 + 𝑇

Encoder(w) 
Video
Frame

Append locational embedding

Decoder(w) 

In-situ video frames



NeuraDiff: High Level Idea
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Simulate for T steps, using phase field model 

Stitch with annotation

Neural Diff 
Equation ……

𝑐𝑣
∗ (𝑡0 )𝑐𝑖

∗ (𝑡0 ) 𝜂∗(𝑡0)

𝜂∗∗(𝑡0)

Copy

Neural Diff Equation Net 1. Annotation

2. Simulated field variables

3. Recognized field variables

Triage
Loss function penalizes 
the mismatch among
predictions from neural 
differential eqn net (2), 
recognition net (3) and 
annotation (1).

𝑐𝑣
∗ (𝑡0 )𝑐𝑖

∗ (𝑡0 )

Neural Diff 
Equation

Time 𝑡0

Encoder(w) 
Video
Frame

Append locational embedding
Decoder(w) 

Recognition NetTime 𝑡0 + 𝑇

Encoder(w) 
Video
Frame

Append locational embedding

Decoder(w) 

In-situ video frames



Learning models for dendritic solidification

𝐹 𝜙,𝑚 = 
1

2
𝜖2 ∇𝜙 2 + 𝑓(𝜙,𝑚) 𝑑𝑣,

𝑓 𝜙,𝑚 =
1

4
𝜙4 −

1

2
−

1

3
𝑚 𝜙3 +

1

4
−

1

2
𝑚 𝜙2,

𝜖 = ҧ𝜖𝜎(𝜃),

𝜎 𝜃 = 1 + 𝛿cos(𝑗(𝜃 − 𝜃0)),

𝜃 = tan−1
𝜕𝜙/𝜕𝑦

𝜕𝜙/𝜕𝑥
,

𝑚 𝑇 = 𝛼/𝜋 tan−1[𝛾(𝑇𝑒𝑞 − 𝑇)],

Dendritic growth follows Allen-Cahn equation:

𝜏
𝜕𝜙

𝜕𝑡
= −

𝛿𝐹

𝛿𝜙
Temperature follows conservation law:

𝜕𝑇

𝜕𝑡
= ∇2𝑇 + 𝜅

𝜕𝜙

𝜕𝑡
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Phase-field model:

Ground-truth 𝜙

Controlled learning experiment

▪ Intentionally first learn on data in 

which ∇𝜙 = 0;

▪ In this case, blue parameters do not 

affect dynamics;

▪ Focus on learning red parameters.

▪ Allow ∇𝜙 to vary in the second stage, 

hence start to learn blue parameters.



Comparison
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Ground-truth 𝜙
Learning all 

parameters at once

Controlled learning 

experiments



AI Driven Materials Discovery in Extreme Conditions

● Search for strong materials under heavy irradiation 

and extreme high temperature

● Understand defect formation, migration in extreme 

conditions

● Better materials for future nuclear reactors

● In-situ experimentation

19
In-situ experiment setup (Argonne National Lab)

Nanovoid defects captured 

by in-situ experiment



In situ Video
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Novel AI techniques are 

needed!

- Terabytes of data

- Beyond manual effort

- 3.75 months work (40 

hours per week) 

analyzing a 10-minute 

video if spend 5 

minutes per frame



Track Nanovoids + Learn Phase Field Model

TEM Video Partial Annotation

(every 10th frame)

Nanovoid 

Tracking
Identify phase field model parameters

Simulate void evolution according 

to learned model

21

NN cannot predict 

future well



NeuraDiff for Real-world In-situ Video Data
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NeuraDiff UNet Baseline

Synthetic Data 98.5% 99.9%

Real-world In-

situ Data

96.2% 96.4%

In situ video NeuraDiff Tracking Output

Pixelwise Tracking Accuracy

Compared to baseline methods, 

NeuraDiff shows similar tracking

accuracy, and superior learning of 

physics model



Conclusions

● Control Variable Genetic Programming (CVGP) for symbolic 
regression

○ Learning from control variable experiments
○ Incrementally build complex equations from simple ones using 

genetic programming

● Neuradiff: learning partial differential equations from 
experiment data

○ Integrate recognition neural net with neural PDE net

● Controlled experiments improve learning dendritic solidification
● Learning nano-structure evolutions from experiment data

○ Applications in the search of strong materials for high temperature 
and irradiation applications

● Look into future: passive learning vs. active probing
○ Science progress resulted from insightful experiment design, 

courageous hypothesis forming (reasoning) + high-capacity 
modeling (learning)  

23

Data

Model

ReasoningLearning
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