Old AI Meets New AI in the Logic of Scientific Discovery

Ioannis Votsis
Associate Professor, Philosophy
Research Head, Reimagining HE in the Age of AI
Northeastern University – London
ioannis.votsis@nulondon.ac.uk
www.votsis.org

AAAI23 Spring Symposium Series, 27th-29th March 2023
(1) Old AI vs. New AI

(2) Hybrid Approaches

(3) A Proposed Hybrid Approach

(4) Adding or Removing Content

(5) Two Constraints on Theory Choice
Old AI vs. New AI
What is old and what is new AI?

- **Old AI**: Roughly, the computational implementation of logical inferences to process symbolic representations.

 Examples: expert systems, automated theorem provers, computational argumentation.

- **New AI**: Roughly, the computational implementation of statistical inferences to process neural representations.

 Examples: shallow and deep neural nets (supervised, unsupervised and reinforcement learning).
<table>
<thead>
<tr>
<th>Positive characteristics</th>
<th>Old AI</th>
<th>New AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptiveness</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Compositionality</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Data efficiency</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Detecting patterns</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Formal verification</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Interpretability</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Learning from data</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Reasoning</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Simpler expressions</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Universality (domain neutral)</td>
<td>☞</td>
<td>☞</td>
</tr>
<tr>
<td>Unstructured data</td>
<td>☞</td>
<td>☞</td>
</tr>
</tbody>
</table>
Hybrid Approaches
Neuro-symbolic systems: Learn and reason

• The popularity of hybrid, a.k.a. ‘neuro-symbolic’, approaches has been on the rise in recent years:

 Arabshahi et al. (2021); Garcez et al. (2019); Hamilton et al. (2022); Schockaert & Gutiérrez-Basulto (2022).

• “The aim here is to [integrate] the two most fundamental aspects of intelligent cognitive behavior: the ability to learn from experience, and the ability to reason from what has been learned” (Valiant 2003: 97).

• Analogies have also been drawn with dual process theories in psychology (Kahneman 2011; Rossi 2022).
How are the two approaches integrated?

“In neural-symbolic computing, knowledge is represented in symbolic form, whereas learning and reasoning are computed by a neural network” (Garcez et al. 2019: 2).

As a general characterisation, this seem a little narrow. Kautz (2020) proposes five different ways to integrate them:

1. Neural net that processes symbols-to-vectors-to-symbols.
2. Symbolic problem-solver with neural pattern subroutine.
3. Neural net trained on symbolic rules (input-output pairs).
4. Symbolic reasoner being fed cascades from neural nets.
5. Embedding symbolic reasoning into neural nets.
A typology

- Several ways to conceptually integrate (not necessarily by preserving) the neural and symbolic approaches.

- They seem to fall under three types:

 (A) Adapting neural systems to perform symbolic tasks like problem-solving and reasoning (K3; K5).

 (B) Adapting symbolic systems to perform neural tasks like feature extraction and pattern recognition.

 (C) Chain neural and symbolic systems together to coordinate their activity (K2; K4).
A Proposed Hybrid Approach
Implication-driven neuro-symbolic approach

• In a nutshell, the approach suggested here seeks to:

 (1) extract symbolic representations (particularly logical formulae) from neural nets and other sources

 AND

 (2) process those representations + existing ones using an automated theorem prover

NB: As such, the approach falls under type C above.

• Besides playing to each tradition’s strengths, it allows us to perform all sorts of *implication-driven discovery tasks*.
Diagrammatic form

check against or conduct new

feed into

symbolic conversion

addition or removal

Hypotheses

Expected Measurements

inference

Symbolic KB + Inference Engine

Neural Model Production

Actual Measurements

Symbolic Knowledge Production

feed into
Extracting symbolic representations

- Some methods that can help with such extraction as well as extraction from other sources (e.g. natural language):

 > **Autoformalisation**: Translating informal (math) proofs into formal proofs (Wu et al. 2022).

 > **Computational argumentation**: Converting neural nets to argument maps (Čyras et al. 2021).

 > **Knowledge Repr. in NNs**: Reversing rule-based and formulae-based translations (Garcez, Gabbay & Broda 2002).
Why reasoning? Why automated theorem proving?

• Arguably, all scientific activity can be reconstructed in terms of reasoning and (nearly*) all reasoning can be automated.

• Automated theorem provers (ATP) have been at the forefront of such automation since 50s and have gotten very efficient.

 Applications: logic programming, SAT solvers, formal verification, math proofs.

• Logic Systems: classical (propositional, first-order, higher-order, etc.), non-classical (modal, default, relevance, etc.)
Some implication-driven discovery tasks

Theory modification (removing content to avoid falsities):
From: $T_i \models O_j$ where O_j is False.
To: $T_i' \not\models O_j$

Theory modification (adding content to gain truths):
From: $T_i \not\models O_j$ where O_j is True.
To: $T_i' \models O_j$

Theory generation (via joint consequence):
From: $T_i \not\models T_k; T_j \not\models T_k$
To: $T_i \land T_j \models T_k$

Expected measurement generation (via joint consequence):
From: $T_i \not\models E_k; T_j \not\models E_k$
To: $T_i \land T_j \models E_k$
The black box conundrum: Et tu, ATP?

• If we are to use such tools as assistants in scientific discovery, we need human-readable output.

• The trouble with the most widely used ATP method, viz. resolution, is that it sacrifices human readability for efficiency.

• A more suitable tool would be to use a natural deduction (ND) ATP (Pelletier 1998).

NB: I’m currently trying to develop a hybrid resolution-ND method that translates more easily into ND proofs.

• That ND is more intuitive (at least as a starting point) is also experimentally suggested in Votsis & Nagle (under review).
Adding or Removing Content
Diagrammatic form

check against or conduct

feed into

Neural Model Production

symbolic conversion

addition or removal

Symbolic Knowledge Production

Hypotheses

Expected Measurements

Symbolic KB + Inference Engine

inference
• Any theory change (including from no theory to some theory) can be modelled as an addition or deletion of content.

• Two quasi-logical notions (Votsis forthcoming) can help here:

A theory T is **content-weakened** to a theory T^- if and only if $\text{Ded}_N(T^-) \subseteq \text{Ded}_N(T)$.

A theory T is **content-strengthened** to a theory T^+ if and only if $\text{Ded}_N(T) \subseteq \text{Ded}_N(T^+)$.

• Analogous to BRT (Alchourrón, Gärdenfors & Makinson 1985; Rose & Langley 1986) but w/a restricted consequence notion.
Example: Fresnel to Maxwell

• Fresnel’s wave theory of light posits a luminiferous ether to explain phenomena (e.g. reflection and transmission of light).

• We can content-weaken Fresnel’s theory by removing the ether assumption and any residual sentences depending on it.

• We can also content-strengthen the theory to an ether-less electromagnetic field.

• That means adding content that construes light:
 * as a vibration in the electric and magnetic field strengths
 * as one of many forms of electro-magnetic radiation
Two Constraints on Theory Choice
Constraints on content

• We have not addressed the crucial question of how to decide which content to add or delete.

• Needless to say, we need to turn to heuristics to make headway on this problem.

• Besides the usual heuristic constraints, e.g. opting for simpler models, we propose two others:

 (1) structural correspondence

 (2) multiple testing ground consilience
1. Structural correspondence

• Such constraints flow from a view known as ‘structural realism’ (Poincaré 1905; Russell 1927).

• **Structural realism**: Scientific theories (in natural science) describe the unobservable world only up to isomorphism.

• **Structural correspondence**: Any new theory must structurally correspond (at least in some limit form) to the well-confirmed parts of its predecessor.

 * wave theory of light ↔ electromagnetic theory (Worrall 1989)
 * phlogiston theory ↔ oxygen theory (Schurz & Votsis 2014)
 * caloric theory of heat ↔ kinetic theory (Votsis & Schurz 2012)
2. Multiple testing ground consilience

• How should we attribute blame/credit to theories in light of disagreement/agreement with empirical results?

• Suppose:

 Central theory: \(T_1 \)
 Auxiliary hypotheses: \(A_1, A_2, A_3 \)
 System: \(S_1 \leftrightarrow (T_1 \land A_1 \land A_2 \land A_3) \)
 Predicted measurements: \(S_1 \models O_1 \land O_2 \)
 Actual measurements: \(O_1 \) is False; \(O_2 \) is True

• **Puzzle:** Given \(O_1 \) is False, which part(s) of \(S_1 \) are needed and which must be replaced or at least removed?
Example

• **Step 1:** Check if all parts of S_1 are needed to derive O_1.

 \[T_1 \land A_1 \land A_2 \vdash O_1 \]
 Defeasibly learn: A_3 ✓

• **Step 2:** Check if remaining parts fare well in other testing grounds.

 \[T_1 \land A_4 \vdash O_3; O_3 \text{ is True} \]
 Defeasibly learn: T_1 ✓

 \[T_2 \land A_1 \vdash O_4; O_4 \text{ is True} \]
 Defeasibly learn: A_1 ✓

 \[T_3 \land A_2 \vdash O_5; O_5 \text{ is False} \]
 Defeasibly learn: A_2 ✗

• **Step 3:** Weaken A_2 to check if some content can be salvaged.

 \[T_3 \land A_2' \nvdash O_5; T_1 \land A_1 \land A_2' \nvdash O_1 \]
 Defeasibly learn: A_2' ✓

 \[T_1 \land A_1 \land A_2' \land A_3 \vdash O_2 \]
 Defeasibly learn: A_3

• **Step 4:** Strengthen A_2' to check if new content is beneficial.

 As above but also $T_4 \land A_2'' \vdash O_6; O_6 \text{ is True} \]
 Defeasibly learn: A_2'' ✓
Summary

• A crude but hopefully useful overview of each tradition’s (neural vs. symbolic) strengths and weaknesses was given.

• The subject of hybrid approaches to AI was then broached, and several different variants identified.

• A proposal was made for such a hybrid approach, extracting symbolic repres. from NNs and using ATP to process them.

• Part and parcel of this proposal is the treatment of theory evolution in terms of content addition and/or deletion.

• Two useful heuristic constraints were then discussed: structural corresp. and multiple testing ground consilience.
The End