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Discovering Explanatory Models

The early stages of any science focus on descriptive laws that 
summarize empirical regularities. 

Mature sciences instead emphasize the creation of models that 
explain phenomena in terms of: 

• Inferred components and structures of entities

• Hypothesized processes about entities’ interactions

Explanatory models move beyond description to provide deeper 
accounts linked to theoretical constructs.  

Can we develop computational systems that address this more 
sophisticated side of scientific discovery? 
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The answer is yes. Discovery researchers have devised systems 
that address this challenge:
• DENDRAL (Lindsay et al.,1980) infers chemical structure from a 

formula, a mass spectrogram, and chemical knowledge. 
• MECHEM (Valdes-Perez, 1994) generates pathways to explain 

reactions using chemical knowledge and constrained search.
• Adam (King et al., 2009) combines experimental design, data 

collection, and causal inference to model yeast metabolism. 
• A/ILP (Bohan et al., 2011) uses abductive logic programming to 

infer a food web for 45 invertebrates from relative abundances. 
• ACE (Anderson et al., 2014) uses nucleotide densities of rocks to 

generate process models for how a landform was produced. 
These systems join data with knowledge to guide search, with 
models offering explanatory accounts of phenomena. 

Explanatory Discovery Systems
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Inferring Chemical Structures

DENDRAL (Lindsay et al., 1980) inferred a molecule’s chemical 
bonds given its component formula and a mass spectrogram.

E.g., from the formula C6H5OH and other relevant information, 
the program produced structures like: 
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DENDRAL relied on heuristic search to infer structural models,  
using knowledge from 20th Century chemistry as a guide.
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Discovering Reaction Pathways

MECHEM (Valdes-Perez, 1994) generated plausible pathways to 
explain chemical reactions.

The system used constrained 
exhaustive search to generate 
candidate explanations. 

Users could select constraints 
they deemed relevant to the 
current task. 

MECHEM found numerous 
pathways that led to articles 
in the chemistry literature. 
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Closed-Loop Discovery in Cell Biology

King et al. (2009) have constructed an integrated system for 
biological discovery that: 

• Designs auxotrophic growth studies with yeast gene knockouts
• Runs these experiments using a robotic manipulator
• Measures the growth rates for each experimental condition
• Revises its causal model for how genes influence metabolism

This closes the loop between experiment design, data collection,  
and model construction in biology. 

Their system has found models of metabolic regulation in yeast. 
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Proposing Food Webs in Ecology

In other work, Bohan et al. (2011) have used abductive logic 
programming to: 

• Process data on relative abundances on invertebrates in fields
• Use knowledge about relative size, cooccurence, and predation

• Infer a three-level food web that relates 45 distinct species

Examination of the literature showed that most of these links 
were consistent with known predatory relations. 

However, the system also hypothesized novel predations that 
ecologists found interesting and important.  
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Cosmogenic Dating

Anderson et al. (2014) reported ACE, a system for cosmogenic 
dating in geology that: 

• Inputs nucleotide densities for rocks from a landform
• Incorporates knowledge about possible geological processes

• Generates process models for how the landform was produced

• Weighs arguments for and against each process explanation

ACE has been downloaded ~600 times and was used actively   
by many geologists to understand their data. 
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Quantitative Explanatory Models

The majority of research on computational scientific discovery 
has focused on either: 

• Inducing numeric laws that describe quantitative observations

• Abducing structural accounts to explain qualitative phenomena

But scientists in advanced fields often combine both activities  
to create models that: 

• Postulate unobserved structural relations among entities

• Incorporate functional forms with numeric parameters 

Can we also develop systems that discover such quantitative 
explanatory models? 
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Early Work on Quantitative Explanations

There has been some research on computational discovery of 
quantitative explanations: 

• Inferring abstract causal models / structural equation models 
(Glymour et al., 1987; Spirtes et al., 1993)

• Identifying sets of linked differential equations (Dzeroski & 
Todorovski, 1993; Stolle & Bradley, 1998; Koza et al., 2001)

These combined distinct numeric equations into qualitative 
structures, but they remained largely descriptive.  

Can we also automate the discovery of quantitative models that 
postulate unobserved variables and processes? 
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d[phyto,t,1] = - 0.307 ´ phyto - 0.495 ´ zoo + 0.411 ´ phyto

d[zoo,t,1] = - 0.251 ´ zoo + 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.307 ´ phyto + 0.251 ´ zoo + 0.385 ´ 0.495 ´ zoo - 0.005 ´ detritus

d[nitro,t,1] = - 0.098 ´ 0.411 ´ phyto + 0.005 ´ detritus

Formal accounts of ecosystem 
dynamics are often cast as sets of 
differential equations. 
Here four equations describe the 
concentrations of phytoplankton, 
zooplankton, nitrogen, and detritus 
in the Ross Sea over time. 
Such models can match observed 
variables with some accuracy. 
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A Deeper Account of Ross Sea Dynamics

d[phyto,t,1] = - 0.307 ´ phyto - 0.495 ´ zoo + 0.411 ´ phyto

d[zoo,t,1] = - 0.251 ´ zoo + 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.307 ´ phyto + 0.251 ´ zoo + 0.385 ´ 0.495 ´ zoo - 0.005 ´ detritus

d[nitro,t,1] = - 0.098 ´ 0.411 ´ phyto + 0.005 ´ detritus

As phytoplankton uptakes nitrogen, 
its concentration increases and the 
nitrogen decreases. This continues 
until the nitrogen is exhausted, 
which leads to a phytoplankton die 
off. This produces detritus, which 
gradually remineralizes to replenish 
nitrogen. Zooplankton grazes on 
phytoplankton, slowing the latter’s 
increase and also producing detritus.
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Processes in Ross Sea Dynamics

d[phyto,t,1] = - 0.307 ´ phyto - 0.495 ´ zoo + 0.411 ´ phyto

d[zoo,t,1] = - 0.251 ´ zoo + 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.307 ´ phyto + 0.251 ´ zoo + 0.385 ´ 0.495 ´ zoo - 0.005 ´ detritus

d[nitro,t,1] = – 0.098 ´ 0.411 ´ phyto + 0.005 ´ detritus

As phytoplankton uptakes nitrogen, 
its concentration increases and the 
nitrogen decreases. This continues 
until the nitrogen is exhausted, 
which leads to a phytoplankton die 
off. This produces detritus, which 
gradually remineralizes to replenish 
nitrogen. Zooplankton grazes on 
phytoplankton, slowing the latter’s 
increase and also producing detritus.
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A Process Model for Ross Sea Dynamics

process phyto_loss(phyto, detritus)
equations: d[phyto,t,1] = -0.307 ´ phyto

d[detritus,t,1] = 0.307 ´ phyto

process zoo_loss(zoo, detritus)
equations: d[zoo,t,1] = -0.251 ´ zoo

d[detritus,t,1] = 0.251 ´ zoo

process zoo_phyto_grazing(zoo, phyto, detritus)
equations: d[zoo,t,1] = 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.385 ´ 0.495 ´ zoo
d[phyto,t,1] = -0.495 ´ zoo

process nitro_uptake(phyto, nitro)
equations: d[phyto,t,1] = 0.411 ´ phyto

d[nitro,t,1] = -0.098 ´ 0.411 ´ phyto

process nitro_remineralization(nitro, detritus)
equations: d[nitro,t,1] = 0.005 ´ detritus

d[detritus,t,1 ] = -0.005 ´ detritus

We can reformulate such an 
account by restating it as a  
quantitative process model. 

This maps onto the earlier 
differential equation model, 
but it is explicit about the 
component processes. 

Each process indicates that 
certain terms in equations 
must stand or fall together. 
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Inductive Process Modeling

!!!

Time-series data

Generic processes

Process 
models

Organism1 [predator, prey]
Organism2 [predator, prey]

Target variables

!!!

Inductive Process 
Modeling

exponential_growth(Organism1)
  rate R = Organism1
  derivatives  d[Organism1,t] = a * R
  parameters a = 0.75

holling(Organism2, Organism1)
  rate R = Organism2 * Organism1
  derivatives   d[Organism2,t] = b * R,
                     d[Organism1,t] = c * R
  parameters  b = 0.0024, c = –0.011

!!!

exponential_growth(X [prey]) [growth]
  rate R = X
  derivatives  d[X,t] = a * R
  parameters a > 0

holling(X [predator], Y [prey]) [predation]
  rate R = X * Y
  derivatives   d[X,t] = b * R, d[Y, t] = c * R
  parameters  b > 0, c < 0

Inductive process modeling is the task of constructing such process 
models from data and knowledge (Langley et al., ICML-2002). 

Models are stated as sets of differential equations organized into 
higher-level processes. 
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Some Generic Processes

process exponential_loss(S, D) process remineralization(N, D)
variables: S{species}, D{detritus} variables: N{nutrient}, D{detritus}
parameters: a [0, 1] parameters: p [0, 1]
equations: d[S, t, 1] = -1 ´ a ´ S equations:

d[D, t, 1] = a ´ S d[N, t, 1] = p ´ D
d[D, t, 1] = -1 ´ p ´ D

generic process grazing(S1, S2, D) process constant_inflow(N)
variables: S1{species}, S2{species}, D{detritus} variables: N{nutrient}
parameters: r [0, 1], g [0, 1] parameters: n [0, 1]
equations: d[S1, t, 1] = g ´ r ´ S1 equations: d[N, t, 1] = n

d[D ,t, 1] = (1 - g) ´ r ´ S1
d[S2, t, 1] = -1 ´ r ´ S1

generic process nutrient_uptake(S, N)
variables: S{species}, N{nutrient}
parameters: t [0, ¥], b [0, 1], µ [0, 1]
conditions: N > t
equations: d[S, t, 1] = µ ´ S 

d[N, t, 1] = -1 ´ b ´ µ ´ S

Each generic process specifies 
variable types, functional forms,  
and ranges on parameters. 

These provide building blocks
from which to compose models.
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Inductive Process Modeling as Search

We can view process model induction as constrained search 
through two distinct but connected spaces: 

• A discrete space of model structures: a set of processes that 
specify variables and equations that relate them

• A continuous space of numeric parameters for each model 
structure, with ranges for possible values. 

Our early systems carried out exhaustive search in the structure 
space and gradient descent to estimate parameters. 

This sufficed for models with under ten processes and produced 
some promising results. 
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Early Results for Process Modeling

aquatic ecosystems protist dynamics

hydrology biochemical kinetics 18



In addition, we extended the basic framework to support: 
• Inductive revision of process models (Ecological Modeling, 2006)

• Hierarchical generic processes to constrain search (AAAI-2005)

• Ensembles of processes to mitigate overfitting (ICML-2005)

• Iterative optimization for missing observations (ECML-2006) 

• Induction of spatio-temporal process models (AAAI-2010)

• Constraints on processes for plausibility (Topics in CogSci, 2010)

These extensions made process model induction more robust 
along multiple fronts. 

Extensions to Inductive Process Modeling
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Drawbacks of the Approach

Despite these successes, this approach suffers from four key 
drawbacks, in that it:
• Evaluates full model structures, so disallows heuristic search
• Requires repeated simulation to estimate model parameters

• Invokes random restarts to reduce chances of local optima

• Despite these steps, it can still find poorly-fitting models

As a result, it does not scale well to complex modeling tasks 
and it is not reliable. 

More recent research has reformulated the task in ways that 
avoids these problems (Langley & Arvay, AAAI-2015). 
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Rate-Based Process Models

The new modeling framework is more constrained in that each 
process P must include: 

• A rate that denotes P’s speed / activation on a given time step

• An algebraic expression that describes P’s rate 

• One or more derivatives that are proportional to P’s rate

Negative derivatives correspond to process inputs and positive 
ones to outputs, much as in chemical reactions. 

The notation has important mathematical properties that make 
model induction efficient and robust. 
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Two-Level Heuristic Search for Process Models

22

Equations for later variables
are constrained by processes 
included in earlier ones



We compared the old and new approach on synthetic data for a  
three-variable predator-prey ecosystem. 

The new system found accurate models far more reliably and 
ran 800,000 faster than the earlier one. 
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With smoothing, the approach handles 10% noise on synthetic data. 

The approach also scales well to increasing numbers of generic 
processes and variables in the target model. 

Handling Noise and Complexity

24



Behavior on Complex Synthetic Data

The approach finds the correct model for a 20-organism food chain. 

This is more evidence that it scales well to difficult modeling tasks. 
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Extensions to Rate-Based Modeling

In more recent work, we have augmented the rate-based approach 
to process model induction to: 
•Adapt process models to new settings (Arvay / Langley, ACS 2015)

•Detect anomalies, reestimate parameters, revise structure

•Selective induction of process models (Arvay / Langley, ACS 2016)

•Sample processes, delay variable bindings, find multiple equations

•Posit new processes to break impasses (Langley / Arvay, AAAI-2017)

•Combine conceptual relations with algebraic rate templates

These extensions have provided more coverage, scalability, and 
reliability than the basic approach.
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Related and Future Research

Our approach builds on ideas from earlier research, including: 
• Qualitative representations of scientific models (Forbus, 1984)

• Inducing differential equations (Todorovski, 1995; Bradley, 2001)

• Heuristic search and multiple linear regression
• Delayed commitment and feature selection

Our plans for extending the rate-based framework include: 
• Devising experiments to discriminate among models

• Discovering forms of entirely new processes
• Finding multi-scale models at different temporal resolutions

These should extend coverage and usefulness even further.  
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Potential Applications

Scalable methods for process model induction would be useful  
in many practical settings, including: 
• Elucidating new reaction pathways in biochemistry

• Understanding ecological dynamics of human microflora

• Designing reaction pathways for chemical production

• Designing metabolic pathways for synthetic biology

Computational tools for scientific discovery should let us not 
only interpret observations, but generate new behavior. 
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Summary Remarks

• Incorporates a formalism that is familiar to many scientists

• Uses background knowledge about the problem domain

• Produces meaningful results from moderate amounts of data 

• Finds causal models that explain, not just describe, observations

• Scales well both to many processes and complex models

Inductive process modeling is a promising approach to creating  
scientific accounts that:

The framework combines search in a space of discrete model 
structures and a space of continuous model parameters. 

For more information, see http://www.isle.org/process/ .
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