Machine Learning for Optimizing Plasma Resource Utilization on Mars
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On Mars, the atmosphere is very thin and is composed mainly of CO,, with a small percentage of other gases.
The conversion of CO, could play a crucial role in supporting human exploration beyond our planet, by
enabling the production of both fuel and breathable oxygen on Mars [1].
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To account for the dissociation of CO, in plasma, various reactions including direct electron collisions and
stepwise processes must be considered. The reaction scheme of low-temperature plasmas can be described
with a set of reactions and rate coefficients. However, some of these coefficients are not yet well

determined or have a significant uncertainty associated.

Simplified Oxygen Model

Objectives

A Primary Goal: determine rate coefficients
that describe the kinetics of low-temperature
plasma.

When dissociating CO,, atomic oxygen is also
produced, which can in turn influence the overall
dissociation. We start this research by studying a
simplified oxygen kinetic model, comprising a total
of 9 reactions and 3 different heavy species. For the
first results we choose to predict the rate
coefficients for the first 3 reactions:

Other aims:
* improve reaction scheme completeness,
by utilizing dimensionality reduction
techniques to eliminate less relevant
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Rate coefficients,
LoKI Plasma Densities, n;

The simulations are performed using the LoKI (LisbOn Kinetics) simulation tool [2],
which provides a self-consistent description of both electron and heavy species
kinetics in the plasma. Overall LoKl can provide large datasets for different user-
defined working conditions, making possible the use of supervised learning ML

models.
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The forward mapping given by the simulation tool suffers from a rank deficit, making the problem more
challenging. We are tackling a non-linear and ill-posed problem by seeking a machine learning model to
solve the inverse mapping problem. Specifically, we aim to determine the rate coefficients, k, given the

steady-state plasma densities.

Deep Learning Model / First Results
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Fully-connected neural network:
* 2 Hidden layers
* Tanh activation
* ADAM Optimizer
* MSE loss function
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