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Sci. discovery as problem solving

Many philosophers of science have held mystical views of 
discovery, believing it to be ‘immune to logical analysis’, 
‘inherently irrational’ and ‘beyond understanding’

Herbert Simon (1966) put forward the view that 
• Problem solving can be viewed as heuristic search
• Scientific discovery is a kind of problem solving, 

involving
• Search through a space of problem states
• Generated by applying mental operators
• Guided by heuristics to make it tractable

This paved the way for understanding and automating sci. disc.2



Computational scientific discovery

Scientific Discovery is the process by which scientists create 
or find hitherto unknown knowledge, such as

• A new class of objects (e.g., new class of celestial objects, say 
quasars, or a new species of living organisms)

• An empirical law, e.g., Kepler’s law of planetary motion
• An explanatory theory, e.g., Newton’s theory of gravity

Computational scientific discovery aims to 
• Provide computational support for and 
• Automate certain aspects of this process
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Scientific knowledge structures
In the process, of scientific discovery, scientists generate 
and manipulate/revise scientific knowledge structures

• Observations
• Taxonomies
• Laws
• Theories
• Models, Predictions, Explanations (derived from the above)

Taxonomies
• Define or describe concepts for a domain, along with 

specialization relations among them
• Specify the concepts and terms used to state laws and theories4



Scientific knowledge structures

Laws: Summarize relations among observed 
variables, objects or events
Theories: 

• Statements about the structures or processes that arise 
in the environment

• Stated using terms from the domain's taxonomy 
• Interconnect laws into a unified theoretical account

Models: More specific than laws, adapt a general law 
to a specific situation/system 

• E.g., F = m x a (Newton’s second law)
• For a specific object of mass 2.3 kg, we would have the 

model F = 2.3 x a 5



Scientific knowledge: representation

Scientific knowledge is typically represented in  scientific 
formalisms (e.g., equations, pathways), introduced and 
routinely used by scientists

It involves domain expertise, e.g., concepts from the 
studied scientific domain
Is accessible to/communicable among domain scientists6

Newton’s theory of gravitation Krebs’ citric acid cycleKepler’s laws of planetary motion



Computational scientific 
discovery: Finding eqns in data

• Input: Observations of distances between moons and 
Jupiter (d) and periods of their orbits (p)

• Output: Kepler’s third law 
• Process of discovery

• BACON (Langley 1978; Langley et al. 1987)
• Carries out heuristic search through the space of numeric 

terms, looking for constant values and linear relations

• Proceeds from observed variables to constant theoretical term7



Automated modelling of dynamic 
systems: Finding ODEs in data

• Input: Observed behavior of dynamic system

• Output: System of ODEs
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Finding polynomial ODEs: 
LAGRANGE 

Parametric specification of the search space of 
polynomial ODEs (Dzeroski and Todorovski 1993)
• Introducing time derivatives up to order o (numerically)
• Introducing new terms with multiplication of system 

variables and their derivatives (up to degree d)
• Exhaustive search: Generating and testing equations 

using linear regression with max r independent variables 
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Finding polynomial ODEs: CIPER 

Constrained induction of polynomial equations   
(Todorovski, Ljubic & Dzeroski 2003)
Input : training data D, dependent variable vd (derivative), 
number of equations b
Output: the b polynomial  equations for vd that are best 
wrt the data D, according to the MDL heuristics

Heuristic (beam) search through the space of eqns
• Starts with simplest equation vd == const
• Uses a refinement operator on polynomial eqns
• Refinements are super-polynomials of parents 10



Finding polynomial ODEs: CIPER 

Heuristic search through the space of polynomial equations

Refinement operators
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SINDy: Polynomial ODEs with 
sparse LR (Brunton, Proctor & Kutz 2016)
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Representation: 
Qualitative models

• The U-tube system

• Differential equations

• Qualitative differential equations (qualitative 
constraints valid on the system vars. & their derivs.)

13



Data-driven & Knowledge-driven 
modelling approaches 

Data-driven (empirical) modeling focusses on data:
1. (Many) Different model structures (from a given class) are 

considered in a trial& error fashion
2. A model = structure + parameter values that fits the data best is 

returned, which doesn’t rely on domain knowledge and is most 
often black box

Knowledge-driven modelling focuses on domain knowledge:
1. Expert derives proper model, based on knowledge of domain and 

modelling formalism
2. Typically, both the structure and parameters of the models are 
derived by the expert from knowledge about processes and process 
rates/parameters 14



Integrating data- and knowledge-
driven modelling

• Allows flexible trade-off between data and domain 
knowledge and handles

• Lots of knowledge and little data or
• Lots of data and little knowledge, as the case may be

• Produces models that fit the data well, but also make 
sense from the domain point of view

• Domain knowledge can be about
• The basic building blocks of systems/ models in the domain
• Existing models in the domain (that need to be revised)
• Incomplete models, than need to be completed

• All of these can be expressed with grammars 15



Grammar-based equation discovery
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• Input: Observed behavior of dynamic system + Grammar

• Output: System of ODEs



Example CFGs for Equations

• Universal grammar (arithmetic expressions); Polynomials
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Grammars are generative models
• Parse trees derive expressions from a grammar

• Refinement of parse trees: To get more complex equations, 
use more complex production rules instead of simpler ones 

• E.g., use second instead of first rule below
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Example parse tree & refinement
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Searching the space of equation 
structures defined by the grams. 

LAGRAMGE (Todorovski & Dzeroski 1997)
• Exhaustive search, generate and test equations 

corresponding to parse trees of limited depth
• Heuristic search (beam search)
1. start with simplest parse tree, then repeat
2. evaluate parse trees, place them in beam, retain k best 
3. if beam not changed, stop & report beam content
4. otherwise expand/refine each parse tree on the beam
Parameter estimation (gradient descent, RRR; diff. evolution)
Search can also be performed with grammar-based genetic 
programming (that’s how we got the idea for LAGRAMGE) 20



Multi-layer representations: 
Qual. & quant. Aspect of PBMs
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fox hare

predator-prey
d hare / dt = -
0.35×hare×fox
d fox / dt = 0.03×hare×fox

loss
d fox / dt = -1.2×fox  

growth
d hare / dt = 
2.5×hare

We can transform the problem of PBM into a problem of 
grammar-based equation discovery (Todorovski 2003) or…



Direct search in the space of PBMs
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fox hareinteraction§

fox harepredator-
prey§

fox haresymbiosis§

fox harecompetitive 
exclusion§

fox hareunlimited 
predation§

fox harelimited
predation§

Interaction

Predator-
Prey

Unlimited 
predation

Limited 
predation

Symbiosis

Competitive 
Exclusion



Equation Discovery with PCFGs 
(Brence et al.)
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• Basic idea: Instead of CFGs, use Probabilistic CFGs

• Probabilistic CFGs are much like CFGs
• They consist, in essence, of production rules

• In PCFGs, each production rule has a probability
• For each nonterminal symbol A, the probabilities of 

all production rules with A on the LHS sum up to 1 



Probabilistic CFGs for ED: Example
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• A PCFG for arithmetic expressions
• Probabilities for each non-terminal symbol sum up to 1



Sampling expressions from PCFGs 
& Monte-Carlo algorithm for ED
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The utility of grammars in ED

• CF Grammars ca be used to represent 
different kinds of domain knowledge

• Basic building blocks of systems/ models 
in the domain

• Existing models in the domain 
(that need to be revised)

• Incomplete models, 
than need to be completed

• PCFGs can be used to express 
parsimony preferences

• PCFGs have been recently used to 
represent dimensional constraints 26



Using grammars to train other 
generative models (Meznar et al.)
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• Generate many 
expressions from a 
grammar

• Train a hierarchical 
variational autoencoder

• Explore the HVAE latent 
space with Evolutionary 
Algorithms



Learning grammars from 
corpora of equations (Chaushevska el al.)

• For a start, we can learn the probabilities in a PCFG
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The vision: 
Automated scientific modeling

• AI/Machine learning approaches capable of 
functioning within the scientific knowledge ecosystem 
and contributing to the pool of scientific knowledge

• Using both observations and existing knowledge/models
• Producing new knowledge (models) that can be used 

further (by both humans and machines)

• To this end, we need to
• Integrate knowledge-driven and data-driven modeling
• Data and knowledge need both to be first-class citizens, so 

that one can store, query/find, retrieve and reuse them
• Representations for models and knowledge should be close 

to those used by humans in scientific modeling 29
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