

Ramanujan Machine Generating Conjectures on Mathematical Constants

Itay Beit-Halachmi, Rotem Elimelech, Ofir David, and Ido Kaminer

A tour of the real line...

1,2,3,5,8,13,21,34, ...

π =	= 3	.14	15	

 $\phi = 1.618033 \dots \zeta(3) = 1.2020569 \dots$

Fundamental constants in many fields of science

Field	Name	Decimal Expansion
Related to Continued Fractions	Lévy's constant	$\gamma = 3.275822\ldots$
	Khinchin's constant	$K_0 = 2.685452\dots$
Chaos Theory	First Feigenbaum constant	$\delta = 4.669201\ldots$
	Second Feigenbaum constant	$\alpha = 2.502907\dots$
	Laplace Limit	$\lambda = 0.662743$
Number Theory	Twin Prime consta	-X
	Meissel – Mertens	You Bar Lond and
	Landau–Ramanuja	use store be
Combinatorics	Euler–Mascheroni	
	Catalan's constant	
	· · · ·	
		Service

Open questions in chaos theory

Feigenbaum's constants appear in problems of fluid-flow turbulence, electronic oscillators, chemical reactions, and in the Mandelbrot set

Fundamental constants in many fields of science

Constants provide an absolute ground truth, with unlimited amounts of data

	Table of Constants	555	^
0.8561089817	With Landau–Ramanujan constant [2.3]		
0.8565404448	3rd Pappalardi constant, with Artin's constant [2.4]	
0.8621470373	With Gauss-Kuzmin-Wirsing constant [2.17]		
0.8636049963	With Stolarsky–Harborth constant [2.16]		
0.8657725922	Conjectured value of integer Chebyshev constant	[4.9]	
0.8660254037	$\sqrt{3}/2$; 2D Steiner ratio [8.6], universal coverage [[8.3]	
0.8689277682	With Landau-Ramanujan constant [2.3]		
0.8705112052	With Otter's tree enumeration constants [5.6]		
0.8705883800	A_4 ; with Brun's constant [2.14]		
0.8711570464	One of Flajolet's constants, with Thue-Morse [6.8	3]	
0.8728875581	With Landau-Ramanujan constant [2.3]		
0.8740191847	L/3; with Landau-Ramanujan [2.3], Gauss' lemm	niscate [6.1]	
0.8740320488	One of Turán's power sum constants [3.16]		
0.8744643684	With Niven's constant [2.6]		
0.8785309152	One of the geometric probability constants [8.1]		
0.8795853862	With Lenz–Ising constants [5.22]		
0.8815138397	Average class number, with Artin's constant [2.4]		
0.8856031944	Minimum of $\Gamma(x)$, with Euler–Mascheroni constant	ant [1.5.4]	
0.8905362089	$e^{\gamma}/2$; with Hardy–Littlewood constants [2.1]		
0.8928945714	With Niven's constant [2.6]		
0.8948412245	With Landau–Ramanujan constant [2.3]		
0.90177	$\sqrt{c_0}$; one of the longest subsequence constants [5	.20]	
0.90682	One of Rényi's parking constants [5.3]		
0.9068996821	$\pi/\sqrt{12}$; densest circle packing, with Hermite's co	onstants [8.7]	
0.9089085575	With "one-ninth" constant [4.5]		
0.91556671	One of Rényi's parking constants [5.3]		
0.9159655941	Catalan's constant, G [1.7]		
0.9241388730	With hyperbolic volume constants [8.9]		
0.9285187329	With Gauss-Kuzmin-Wirsing constant [2.17]		
0.9296953983	$\ln(2)/2 + 2G/\pi$; with Lenz–Ising constants [5.2]	2]	
0.9312651841	4th Pappalardi constant, with Artin's constant [2.4	1]	
0.9375482543	$-\zeta'(2)$; with Porter's constant [2.18]		
0.04(90(4072	With London Romannian constant [2 2]		× .

Page 571 of 618 8.26 x 11.68 in

Mathematical Constants, Steven R. Finch (Cambridge University Press, 2003) Encyclopedia of Mathematics and its Applications; v. 94

Leonhard Euler

Srinivasa Ramanujan

$$\frac{4}{\pi} + 1 = 2 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \cdots}}} \qquad e^{\frac{2\pi}{8}} \sqrt{\frac{\sqrt{2} - 1}{2}} = \frac{1}{1 + \frac{e^{-2\pi}}{1 + e^{-2\pi} + \frac{e^{-4\pi}}{1 + e^{-4\pi} + \cdots}}}$$

- The Goal: Automatic Generation of conjectures on Fundamental Constants
- Algorithms
- Distributed Computing Community
- Mathematical Discoveries
- Future Developments

The Team

Ido Kaminer Rotem Elimelech Ofir David **Electrical Engineers** Carlos De la Cruz Mengual **Mathematicians** Eyal Kalman **Physicists** Yahel Manor **Computer Scientists** Rotem Kalish Highschool students Itay Beit-Halachmi Lee Roth Ofir Razon Sergey Studennikov

Automated Theorem Proving

The Four Color Theorem: No more than four colors are required to color the regions of any map, so that no two adjacent regions have the same color.

Conjectured by F. Gurthrie in 1852, proven by Appel and Haken in 1977 using computers.

Automated Conjecture Generation

Automated Conjecture Generation

Graffiti, Fajtlowicz, 1985

PSLQ, Ferguson and Bailey 1992

Output $a_i \in \mathbb{Z}$

Countless discoveries, among them:

$$\pi = \sum_{n=0}^{\infty} \frac{1}{16^n} \left(\frac{4}{8n+1} - \frac{4}{8n+4} - \frac{4}{8n+5} - \frac{4}{8n+6} \right)$$

Compute base-16 digits of π starting at any given position

- The Goal: Automatic Generation of conjectures on Fundamental Constants
- Algorithms
- Distributed Computing Community

- Mathematical Discoveries
- Future Developments

Raayoni, G., Gottlieb, S., Manor, Y. et al. *Nature* **590**, 67–73 (2021)

Razon, O., et al. arXiv:2212.09470 (2022)

Meet in the Middle with Regular Formulas

Re-check at higher precision...

$$2.71828182845 \dots \stackrel{!!}{=} 2.71828182845 \dots$$

If re-check is successful, output a conjecture!

Raayoni, G., Gottlieb, S., Manor, Y. et al. Nature 590, 67–73 (2021)

$$e = 3 + \frac{-1}{4 + \frac{-2}{5 + \frac{-3}{\cdot}}}$$

Descent&Repel

Raayoni, G., Gottlieb, S., Manor, Y. et al. Nature 590, 67–73 (2021)

ESMA

If the pattern found is simple enough, and retesting at high precision maintains equality, then output a conjecture!

Razon, O., et al. arXiv:2212.09470 (2022)

More results...

Novelty	Formula
known	$-1 + e = 1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \dots}}}$
new and unproven	$\frac{1+e}{4(-1+e)} = 1 - \frac{1}{2 + \frac{1}{5 + \frac{1}{2 - \dots}}}$
known	$\frac{1+e}{-1+e} = 2 + \frac{1}{6 + \frac{1}{10 + \frac{1}{14 + \dots}}}$
new and unproven	$\frac{-5+3e}{3-e} = 12 - \frac{1}{1+\frac{1}{5-\frac{1}{1+\cdots}}}$
new and unproven	$\frac{2+2e}{-1+3e} = 2 - \frac{1}{1+\frac{1}{24+\frac{1}{3-\dots}}}$
new and unproven	$\frac{-3+5e}{-6+6e} = 1 + \frac{1}{36+\frac{1}{2-\frac{1}{4-\cdots}}}$
new and unproven	$\frac{1}{-2+2e^2} = 1 - \frac{1}{1 + \frac{1}{11 + \frac{1}{2 - \cdots}}}$

Novelty	Formula
known	$\tan(1) = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{3 + \dots}}}$
new and unproven	$\frac{\tan(1)}{-1+\tan(1)} = 3 - \frac{1}{5 - \frac{1}{7 - \frac{1}{9 - \dots}}}$
new and unproven	$\frac{2 - \tan(1)}{-1 + \tan(1)} = 1 - \frac{1}{4 + \frac{1}{2 - \frac{1}{1 + \dots}}}$
new and unproven	$\frac{2}{\tan(1)} = 2 - \frac{1}{2 - \frac{1}{2 - \frac{1}{3 - \dots}}}$
new and unproven	$\frac{1}{-2 + 2\tan(1)} = 1 - \frac{1}{9 + \frac{1}{1 + \frac{1}{3 - \dots}}}$
new and unproven	$\frac{-2 + 2\tan(1)}{-3 + 2\tan(1)} = 10 - \frac{1}{4 - \frac{1}{2 - \frac{1}{5 - \dots}}}$
new and unproven	$\frac{-5+4\tan{(1)}}{-7+5\tan{(1)}} = 2 - \frac{1}{3 - \frac{1}{2 - \frac{1}{2 - \cdots}}}$

Novelty	Formula
known	$\frac{J_0(1)}{J_1(1)} = 2 - \frac{1}{4 - \frac{1}{6 - \frac{1}{8 - \cdots}}}$
new and unproven	$-1 + \frac{J_0(1)}{J_1(1)} = 1 - \frac{1}{3 + \frac{1}{1 + \frac{1}{5 - \dots}}}$
new and unproven	$\frac{\frac{-3J_1(1)}{2} + J_0(1)}{-J_0(1) + 2J_1(1)} = 1 - \frac{1}{11 + \frac{1}{1 + \frac{1}{3 - \cdots}}}$
new and unproven	$\frac{J_0(1)}{2J_1(1)} = 1 - \frac{1}{8 - \frac{1}{3 - \frac{1}{16 - \dots}}}$
new and unproven	$\frac{-J_0(1) + 3J_1(1)}{-J_1(1) + J_0(1)} = 1 + \frac{1}{2 - \frac{1}{1 + \frac{1}{1 + \dots}}}$
new and unproven	$\frac{-2J_0(1) + 4J_1(1)}{-4J_0(1) + 7J_1(1)}$ $= 12 - \frac{1}{4 - \frac{1}{20 - \frac{1}{6 - \cdots}}}$
new and unproven	$\frac{-12047 J_{1}(1) + 6928 J_{0}(1)}{8(1777 J_{0}(1) + 3090 J_{1}(1))}$ = 1 - $\frac{1}{112 - \frac{1}{2 - \frac{1}{143 + \cdots}}}$
known	$\frac{J_1(1)}{J_2(1)} = 4 - \frac{1}{6 - \frac{1}{8 - \frac{1}{10 - \cdots}}}$
new and unproven	$\frac{J_0(1)}{J_2(1)} = 6 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$

Razon, O., et al. arXiv:2212.09470 (2022)

More results...

Novelty	Formula	Polynomials	Novelty	Formula	Polynomials
new and proven	$\frac{1+e}{-1+e} = 2 + \frac{1}{6 + \frac{1}{10 + \frac{1}{14 + \frac{1}{14}}}}$	$a_n = 4n + 2, \ b_n = 1$	new and proven	$\frac{8}{-8+3\pi} = 5 + \frac{5}{7+\frac{12}{9+\frac{21}{11+\frac{32}{11+\frac{32}{2}}}}}$	$a_n = 5 + 2n, \ b_n = n(n+4)$
new and proven	$\frac{3}{3-e} = 11 - \frac{10}{29 - \frac{28}{55 - \frac{54}{89 - \frac{88}{89}}}}$	$a_n = 2n(2n+7) + 11, \ b_n = -2n(2n+3)$	new and proven	$\frac{4}{-2+\pi} = 3 + \frac{3}{5+\frac{8}{7+\frac{15}{9+\frac{24}{3}}}}$	$a_n = 3 + 2n, \ b_n = n(n+2)$
new and proven	$1 + \frac{e}{e-2} = 5 - \frac{4}{19 - \frac{18}{41 - \frac{40}{71 - \frac{20}{71 - \frac$	$a_n = 2n(2n+5) + 5, \ b_n = -2n(2n+1) + 2$	known	$\frac{4}{\pi} = 1 + \frac{1}{3 + \frac{4}{5 + \frac{9}{7 + \frac{16}{16}}}}$	$a_n = 1 + 2n, \ b_n = n^2$
new and proven	$\frac{e}{-24+9e} = 6 - \frac{1}{7 - \frac{2}{8 - \frac{2}{9 - \frac{4}{3}}}}$	$a_n = 6 + n, \ b_n = -n$	new and proven	$\frac{-4+3\pi}{20-6\pi} = 5 - \frac{2}{8 - \frac{2}{11 - \frac{20}{14 - \frac{35}{20}}}}$	$a_n = 5 + 3n, \ b_n = -(n+1)(2n-1)$
new and proven	$\frac{e}{6-2e} = 5 - \frac{1}{6 - \frac{2}{7 - \frac{3}{8 - \frac{4}{1}}}}$	$a_n = 5 + n, \ b_n = -n$	new and proven	$\frac{4}{-8+3\pi} = 3 - \frac{1}{6 - \frac{6}{9 - \frac{15}{12 - \frac{28}{12}}}}$	$a_n = 3 + 3n, \ b_n = -n(2n-1)$
new and proven	$\frac{1}{-16+6e} = 3 + \frac{1}{4 + \frac{2}{5 + \frac{3}{6 + \frac{3}{4}}}}$	$a_n = 3 + n, \ b_n = n$	new and proven	$\frac{\frac{8}{-8+3\pi}}{=6} - \frac{3}{9-\frac{12}{12-\frac{25}{15-\frac{42}{5}}}}$	$a_n = 6 + 3n, \ b_n = -(n+2)(2n-1)$
new and unproven	$\frac{6e}{-3+2e} = 7 - \frac{4}{14 - \frac{20}{23 - \frac{54}{34 - 112}}}$	$a_n = n(n+6) + 7, \ b_n = -(n+3)n^2$	new and proven	$\frac{\pi}{4-\pi} = 4 - \frac{2}{7 - \frac{9}{10 - \frac{20}{13 - \frac{35}{13}}}}$	$a_n = 4 + 3n, \ b_n = -(n+1)(2n-1)$
new and proven	$\frac{e}{-2+e} = 4 - \frac{1}{5 - \frac{2}{6 - \frac{3}{7 - \frac{4}{4}}}}$	$a_n = 4 + n, \ b_n = -n$	new and proven	$\frac{2}{10-3\pi} = 4 - \frac{3}{7 - \frac{10}{10 - \frac{21}{13 - \frac{26}{10}}}}$	$a_n = 4 + 3n, \ b_n = -n(2n+1)$
new and proven	$\frac{1}{-5+2e} = 2 + \frac{1}{3 + \frac{2}{4 + \frac{3}{5 + \frac{4}{5}}}}$	$a_n = 2 + n, \ b_n = n$	new and proven	$\frac{2\pi+8}{\pi} = 5 - \frac{3}{8 - \frac{12}{11 - \frac{25}{14 - \frac{42}{14}}}}$	$a_n = 5 + 3n, \ b_n = -(n+2)(2n-1)$
new and unproven	$\frac{3}{-10+4e} = 3 + \frac{4}{8 + \frac{20}{15 + \frac{54}{24 + 112}}}$	$a_n = (n+1)(n+3), \ b_n = -(n+3)n^2$	new and proven	$\frac{2}{-2+\pi} = 2 - \frac{1}{5 - \frac{6}{8 - \frac{15}{11 - \frac{28}{2}}}}$	$a_n = 2 + 3n, \ b_n = -n(2n-1)$
new and proven	$e = 3 - \frac{1}{4 - \frac{2}{5 - \frac{3}{6 - \frac{4}{4}}}}$	$a_n = 3 + n, \ b_n = -n$	new and proven	$\frac{6}{-8+3\pi} = 5 - \frac{5}{8-\frac{14}{11-\frac{27}{14-\frac{44}{14}}}}$	$a_n = 5 + 3n, \ b_n = -n(2n+3)$
new and proven	$\frac{1}{-2+e} = 1 + \frac{1}{2+\frac{2}{3+\frac{3}{4+\frac{4}{4}}}}$	$a_n = 1 + n, \ b_n = n$	new and proven	$1 + \frac{\pi}{2} = 3 - \frac{2}{6 - \frac{9}{9 - \frac{20}{12 - \frac{35}{25}}}}$	$a_n = 3 + 3n, \ b_n = -(n+1)(2n-1)$
known	$\frac{1}{-1+e} = \frac{1}{1+\frac{2}{2+\frac{3}{3+\frac{4}{2}}}}$	$a_n = n, \ b_n = n$	new and proven	$\frac{2}{4-\pi} = 3 - \frac{3}{6 - \frac{10}{9 - \frac{21}{12 - \frac{36}{2}}}}$	$a_n = 3 + 3n, \ b_n = -n(2n+1)$
new and proven	$\frac{e}{-1+e} = 2 - \frac{1}{3 - \frac{2}{4 - \frac{2}{5 - \frac{4}{5}}}}$	$a_n = 2 + n, \ b_n = -n$	new and proven	$\frac{2}{\pi} = 1 - \frac{1}{4 - \frac{6}{7 - \frac{15}{10 - \frac{28}{28}}}}$	$a_n = 1 + 3n, \ b_n = -n(2n-1)$
new and unproven	$\frac{4e}{-1+2e} = 3 - \frac{3}{7 - \frac{16}{13 - \frac{45}{21 - \frac{96}{21}}}}$	$a_n = n(n+3) + 3, \ b_n = -(n+2)n^2$	known	$\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \dots}}}$	$a_n = 2, \ b_n = (2n-1)^2$

Raayoni, G., Gottlieb, S., Manor, Y. et al. *Nature* **590**, 67–73 (2021)

Factorial Reduction

	<u><i>n</i> = 1</u>	<u><i>n</i> = 5</u>	<u><i>n</i> = 10</u>	<u><i>n</i> = 15</u>
$4 1^{2}$	4	29520	100370793600	3594206259195552000
$\frac{1}{\pi} = 1 + \frac{2^2}{3 + \frac{2^2}{5 + \frac{3^2}{7 + \frac{3}{2}}}}$	3	23184	78831037440	2822882994841190400
Common divider:	1	144	5760	$3628800 \sim n!$
				"Factorial reduction"
Not related to 1 1^2 .	5	111339	1666739432511	271449448302221139249
fundamental constants $1 + \frac{2^2}{4 + \frac{2^2}{7 + \frac{3^2}{10 + \cdots}}}$	4	91140	1364364406260	222203877902013035340
Common divider:	1	3	9	1053

No factorial reduction

Factorial Reduction-based Search

- Search for continued fractions with this new property
- Extremely rare in random continued fractions
- Appears in all historical examples
- Appears in all the examples that we found to express mathematical constants
- Open question: Which continued fractions have factorial reduction? How to identify them in advance?

Elimelech et al. in preparation

Factorial Reduction-based Search

Elimelech et al. in preparation

- The Goal: Automatic Generation of conjectures on Fundamental Constants
- Algorithms
- Distributed Computing Community
- Mathematical Discoveries
- Future Developments

The Power of the People

Elimelech et al. In preparation

Come join us!

www.ramanujanmachine.com

The Ramanujan Machine on BOINC Project -Computing - Community -Site -

> RotemElimelech Log out

Team search results

The following teams match one or more of your search criteria. To join a team, click its name to go to the team page, then click Join this team

Team name	Description	
TeAm AnandTech	Welcome to TeAm AnandTechl Here you will find plenty of great folks who would be glad to help you with the technical side of setting up and running distributed computing applications. You will find people who are more passionate about numbers than some mathematicians. You will find a great community who enjoy having [slightly] off topic discussions and helping each other immensely in real life. Some projects look outward into space, to look for extraterrestrial life, pulsars, and other things. Others look around, to chart the development of life on the planet, or predict future weather patterns. Yet others look inward, to analyze the structure of atoms, molecules, or proteins. Each project can have a great impact on the development of science in its area, and you can help!	r of th disco
AMD Users	The AMD Users team is a team for users of AMD processors. This doesn't mean that you have to have all AMD machines, but ethically you should have at least one. Of course you can still join us, because in the end all this is for a good cause.	ne. Ha ou!
Team Starfire World BOINC	Team Starfire World BOINC is a small international team of long standing distributed computing enthusiasts and those new as well.	
	We have quite a few members into performance PCs and GPUs, open forums where we want everyone to feel comfortable. You'll find us to be a friendly and helpful group, to help you get started, solve any problem you may have, or join us in beta testing new projects.	

My computers are hungry for tasks

We have a team IRC channel at irc://irc.64.107.140.250/team starfire for our team and general talk.

Come join us!

Come join us!

www.ramanujanmachine.com

	mproved performance of first enumeration #10	
∽(+)	ShaharGottlieb merged 10 commits into RamanujanMachine:master from RuddeK:master 🖸 on Mar 26, 2021	
	Conversation 1 -O- Commits 10 ₽ Checks 0 Files changed 2	
	RuddeK commented on Mar 12, 2021 Contributor Image: Contributor	
<u>Have no time</u> Let your com	Improved the performance of Efficient GCF Enumeration and implemented a new enumeration called Parallel GCF Enumeration. The improvement to the efficient algorithm is usage of infinite precision integer math instead of mpmath floats. The parallel implementation uses numpy matrix math, but still uses only one core. Instead, it uses additional memory, which currently is limited to 0.1GB (10GB had only marginally better performance, i.e. ~1%).	ew.
conjectures v using it. Have	Benchmarks shows that the improved Efficient GCF Enumeration has an execution time that is about half of the original. The Parallel GCF Enumeration further reduces the execution time to less than a third of the improved version, for a total run time of less than 15% of the original algorithm.	new res. Have an
named after y	Details: e depth 20. Cartesian polynomial with an of order 1 in range [-20, 20] and bn of order 2 in range [-20, 20]. Execution time of whole script (with e pre-calculated): parallel: 146s; improved efficient: 599s; old efficient: 1256s. pi depth 20. Cartesian polynomial with an of order 1 in range [-5, 5] and bn of order 2 in range [-30, 30]. Execution time of whole script (with pi pre-calculated): parallel: 37s; improved efficient: 125s; old efficient: 255s.	r you!
	I've also added a prediction of the execution time left for the heaviest step (first enumeration) to the print messages. Please put it through its paces on your own searches! Any feedback is welcome.	

- The Goal: Automatic Generation of conjectures on Fundamental Constants
- Algorithms
- Distributed Computing Community
- Mathematical Discoveries
- Future Developments

New results in Irrationality Measure

 ∞ $G = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2}$

Raayoni, G., Gottlieb, S., Manor, Y. et al. Nature 590, 67-73 (2021)

Conserving Matrix Fields

α	a_n	b_n	Formula	
0	$n^3 + (n+1)^3$	$-n^6$	$\frac{1}{\zeta(3)}$	
1	$n^3 + (n+1)^3 + 4(2n+1)$	$-n^6$	$\frac{1}{1-\zeta(3)}$	
2	$n^{3} + (n+1)^{3} + 12(2n+1)$	$-n^6$	$\frac{8}{9-8\zeta(3)}$	
3	$n^3 + (n+1)^3 + 24(2n+1)$	$-n^6$	$\frac{216}{216\zeta(3)-251}$	
α	$n^{3} + (n+1)^{3} + 2\alpha(\alpha+1)(2n+1)$	$-n^6$	$-\frac{2}{\psi^{(2)}(1+\alpha)}$	

- Formal proof for irrationality of $\zeta(3)$!
- Systematic process
- Can be repeated to other constants

10 20 30 40 v = xy = x/2= 120 10 30 40

David et al. in preparation

Elimelech et al. in preparation

- The Goal: Automatic Generation of conjectures on Fundamental Constants
- Algorithms
- Distributed Computing Community
- Mathematical Discoveries
- Future Developments

Library of Integer Relations and Constants

	const_id [PK] uuid ┏	value numeric	precision integer	time_added timestamp without time zone 🖍
1	03685cfc	114.9751467	68	2022-09-12 10:45:27.077479
2	060c0e44	4.683887925	2000	2022-12-12 20:53:25.876545
3	09aa94ae	0	2000	2022-09-12 10:45:37.565627
4	0b852d5c	5.871178611	2000	2022-09-12 10:45:40.700258
5	0d96664c	0	2000	2022-09-12 10:45:44.066509
6	0f885ed2	6.511259917	2000	2022-12-12 20:53:41.786663
7	Ofaa0a9c	6.871757950	2000	2022-09-12 10:45:47.632681
8	119b05ae	0	2000	2022-09-12 10:45:50.90368
9	137a490c	7.872184629	2000	2022-09-12 10:45:54.047834
10	154a7536	23.80970073	2000	2022-09-12 10:45:57.094241
11	172fffb0	0	4721	2022-09-12 10:46:00.266341
12	190c8114	8.872511998	2000	2022-09-12 10:46:03.395289
13	1b1e5630	4.991444235	2000	2022-09-12 10:46:06.845367
14	1d2eab46	0	2994	2022-09-12 10:46:10.31178
15	1f43346e	11.70459236	1999	2022-12-12 20:54:08.179041

-		\longrightarrow	

		[PK] uuid	character varying	integer[]	timestamp without time zone
	1	0237827a	POLYNOMIAL_PSLQ	{2,1,0,-1,9,-2}	2022-12-21 03:32:52.991892
	2	04198156	POLYNOMIAL_PSLQ	{2,1,0,-8,-1,3}	2022-12-21 01:04:43.807408
	3	044af21a	POLYNOMIAL_PSLQ	{2,1,0,9,8,-5}	2023-01-26 14:30:44.152762
	4	05fbd532	POLYNOMIAL_PSLQ	{2,1,0,-3,-4,1}	2023-01-24 20:59:42.129498
	5	06f8c566	POLYNOMIAL_PSLQ	{2,1,0,-1,-6,1}	2023-01-24 20:31:05.797823
	6	08f358d2	POLYNOMIAL_PSLQ	{2,1,0,6,-1,-1}	2023-01-28 12:05:19.70218
	7	0ad1af80	POLYNOMIAL_PSLQ	{2,1,1,-8,0,0,4	2022-12-02 12:48:27.227349
	8	0adf8a56	POLYNOMIAL_PSLQ	{2,1,0,-2,-1,1}	2022-12-20 23:15:10.226154
	9	0cf7dd04	POLYNOMIAL_PSLQ	{2,1,0,1,1,-1}	2022-12-21 17:26:08.578565
	10	0d0b777e	POLYNOMIAL_PSLQ	{2,1,0,-12,9,-1	2023-01-25 07:07:13.486252
	11	0e2643ce	POLYNOMIAL_PSLQ	{1,1,0,-21,4}	2023-01-27 18:04:34.421882
	12	0ed43370	POLYNOMIAL_PSLQ	{2,1,0,-1,-2,1}	2023-01-25 07:08:21.209485
	13	0f88ee04	POLYNOMIAL_PSLQ	{2,1,1,0,0,-2}	2022-11-16 21:07:03.214841
	14	13c42c48	POLYNOMIAL_PSLQ	{2,1,0,-10,5,1}	2023-01-26 20:29:04.93663
	15	165ff506	POLYNOMIAL_PSLQ	{2,1,0,2,-1,1}	2023-01-26 13:05:20.529417

dotaile

time added

relation id

relation type

- Publicly accessible
- Convenient interface

 $a_1x_1 + a_2x_2 + \dots + a_nx_n = 0$

Thank you!

- The Goal: Automatic Generation of conjectures on Fundamental Constants
- Algorithms
- Distributed Computing Community
- Mathematical Discoveries
- Future Developments

$$\frac{1}{\zeta(5)-\zeta(4)+\zeta(3)-\zeta(2)+1}$$

Raayoni, Gal, et al. "Generating conjectures on fundamental constants with the Ramanujan Machine." Nature 590.7844 (2021): 67-73.

Razon, Ofir, et al. "Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences." arXiv preprint arXiv:2212.09470 (2022).

Elimelech, Rotem, et al. "Algorithm-assisted discovery of a hierarchy in mathematical constants." In preparation

David, Ofir, et al. "The conservative matrix field." In preparation

Beit-Halachmi, Itay, et al. In preparation

www.ramanujanmachine.com

Irrationality criteria

<u>Definition</u>: The **irrationality measure** of $L \in \mathbb{R}$ is the largest δ for which

there exist a rational sequence $p_n/q_n \neq L$ s.t.

$$L - \frac{p_n}{q_n} \bigg| < \frac{1}{q_n^{1+\delta}}.$$

<u>Theorem (Roth's)</u>: The irrationality measure of L

 $\delta = \begin{cases} 0 & for L rational \\ 1 & for L algebric irrational \\ \ge 1 & for L trancdental \end{cases}$

<u>Conclusion</u>: If we find even one sequence with $\delta > 0 \Longrightarrow L$ is irrational