Ad./MM|Muanta

Ramanujan Machine

Generating Conjectures on Mathematical Constants
Itay Beit-Halachmi, Rotem Elimelech, Ofir David, and Ido Kaminer

A tour of the real line...

$$
1,2,3,5,8,13,21,34, \ldots \quad \sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

$\phi=1.618033 \ldots$
$\zeta(3)=1.2020569 \ldots$

Fundamental constants in many fields of science

Field	Name	Decimal Expansion
Related to Continued Fractions	Lévy's constant	$\gamma=3.275822 \ldots$
	Khinchin's constant	$K_{0}=2.685452 \ldots$
Chaos Theory	First Feigenbaum constant	$\delta=4.669201 \ldots$
	Second Feigenbaum constan	$\alpha=2.502907 \ldots$
	Laplace Limit	$\lambda=0662743$
Number Theory	Twin Prime consta	
	Meissel - Mertens	
	Landau-Ramanuja	
Combinatorics	Euler-Mascheroni	
	Catalan's constant	
.	\ldots	
Open questions in chaos theory		

Feigenbaum's constants appear in problems of fluid-flow turbulence, electronic oscillators, chemical reactions, and in the Mandelbrot set

Fundamental constants in many fields of science

Constants provide an absolute ground truth, with unlimited amounts of data

Mathematical Constants, Steven R. Finch (Cambridge University Press, 2003)
Encyclopedia of Mathematics and its Applications; v. 94

Leonhard Euler

$$
\frac{4}{\pi}+1=2+\frac{1^{2}}{2+\frac{3^{2}}{2+\frac{5^{2}}{2+\cdots}}}
$$

Srinivasa Ramanujan

$$
e^{\frac{2 \pi}{8}} \sqrt{\frac{\sqrt{2}-1}{2}}=\frac{1}{1+\frac{e^{-2 \pi}}{1+e^{-2 \pi}+\frac{e^{-4 \pi}}{1+e^{-4 \pi}+\cdots}}}
$$

- The Goal: Automatic Generation of conjectures on Fundamental Constants
- Algorithms
- Distributed Computing Community
- Mathematical Discoveries
- Future Developments

The Team

Automated Theorem Proving

The Four Color Theorem: No more than four colors are required to color the regions of any map, so that no two adjacent regions have the same color.

Conjectured by F. Gurthrie in 1852, proven by Appel and Haken in 1977 using computers.

Mathematician

Algorithms

Automated Conjecture Generation

Mathematician

Algorithms

Automated Conjecture Generation

Graffiti, Fajtlowicz, 1985

Suggest a conjecture

Look for counter-
example from familiar
graphs
Counter-example found

Disqualify
conjecture

PSLQ, Ferguson and Bailey 1992

Countless discoveries, among them:

Over 60 publications regarding suggested conjectures!

- The Goal: Automatic Generation of conjectures on Fundamental Constants
- Algorithms
- Distributed Computing Community

$$
\frac{4}{\pi-2}=3+\frac{1 \cdot 3}{5+\frac{2 \cdot 4}{7+\frac{3 \cdot 5}{9+\frac{4 \cdot 6}{11+\frac{5 \cdot 7}{13+\frac{6 \cdot 8}{\ldots}}}}}}
$$

- Mathematical Discoveries
- Future Developments

Meet in the Middle with Regular Formulas

Re-check at higher precision...

$$
2.71828182845 \ldots \stackrel{!}{=} 2.71828182845 \ldots
$$

If re-check is successful, output a conjecture! $\quad e=3+\frac{-1}{4+\frac{-2}{5+\frac{-3}{!}}}$
G., Gottlieb, S., Manor, Y. et al. Nature 590, $67-73$ (2021)

Descent\&Repel

Raayoni, G., Gottlieb, S., Manor, Y. et al. Nature 590, 67-73 (2021)

ESMA

If the pattern found is simple enough, and retesting at high precision maintains equality, then output a conjecture!

More results...

Novelty	Formula
known	$-1+\mathrm{e}=1+\frac{1}{1+\frac{1}{2+\frac{1}{1+\cdots}}}$
new and unproven	$\frac{1+\mathrm{e}}{4(-1+\mathrm{e})}=1-\frac{1}{2+\frac{1}{5+\frac{1}{2-\cdots}}}$
known	$\frac{1+\mathrm{e}}{-1+\mathrm{e}}=2+\frac{1}{6+\frac{1}{10+\frac{1}{14+\cdots}}}$
new and unproven	$\frac{-5+3 \mathrm{e}}{3-\mathrm{e}}=12-\frac{1}{1+\frac{1}{5-\frac{1}{1+\cdots}}}$
new and unproven	$\frac{2+2 \mathrm{e}}{-1+3 \mathrm{e}}=2-\frac{1}{1+\frac{1}{24+\frac{1}{3-\cdots}}}$
	$\frac{-3+5 \mathrm{e}}{-6+6 \mathrm{e}}=1+\frac{1}{36+\frac{1}{2-\frac{1}{4-\cdots}}}$
new and	
unproven	

Novelty	Formula
known	$\tan (1)=1+\frac{1}{1+\frac{1}{1+\frac{1}{3+\cdots}}}$
new and unproven	$\frac{\tan (1)}{-1+\tan (1)}=3-\frac{1}{5-\frac{1}{7-\frac{1}{9-\cdots}}}$
new and unproven	$\frac{2-\tan (1)}{-1+\tan (1)}=1-\frac{1}{4+\frac{1}{2-\frac{1}{1+\cdots}}}$
new and unproven	$\frac{2}{\tan (1)}=2-\frac{1}{2-\frac{1}{2-\frac{1}{3-\cdots}}}$
new and unproven	$\frac{1}{-2+2 \tan (1)}=1-\frac{1}{9+\frac{1}{1+\frac{1}{3-\cdots}}}$
new and unproven	$\frac{-2+2 \tan (1)}{-3+2 \tan (1)}=10-\frac{1}{4-\frac{1}{2-\frac{1}{5-\cdots}}}$

More results...

Novelty	Formula	Polynomials	Novelty	Formula	Polynomials
new and proven	$\frac{1+e}{-1+e}=2+\frac{1}{6+\frac{1}{10+\frac{1}{14+I}}}$	$a_{n}=4 n+2, b_{n}=1$	new and proven	$\frac{8}{-8+3 \pi}=5+\frac{5}{7+\frac{12}{9+\frac{21}{11+\frac{32}{}}}}$	$a_{n}=5+2 n, b_{n}=n(n+4)$
new and proven	$\frac{3}{3-e}=11-\frac{10}{29-\frac{25}{55-\frac{25}{89-\frac{88}{}}}}$	$a_{n}=2 n(2 n+7)+11, b_{n}=-2 n(2 n+3)$	new and proven	$\frac{4}{-2+\pi}=3+\frac{3}{5+\frac{8}{7+\frac{15}{9+24}}}$	$a_{n}=3+2 n, b_{n}=n(n+2)$
new and proven	$1+\frac{e}{e-2}=5-\frac{4}{19-\frac{18}{41-\frac{18}{71-Z T}}}$	$a_{n}=2 n(2 n+5)+5, b_{n}=-2 n(2 n+1)+2$	known	$\frac{4}{\pi}=1+\frac{1}{3+\frac{4}{5+\frac{9}{7+\underline{15}}}}$	$a_{n}=1+2 n, b_{n}=n^{2}$
new and proven	$\frac{e}{-24+9 e}=6-\frac{1}{7-\frac{2}{8-\frac{3}{9-\Psi}}}$	$a_{n}=6+n, b_{n}=-n$	new and proven	$\frac{-4+3 \pi}{20-6 \pi}=5-\frac{2}{8-\frac{9}{11-\frac{20}{14-\frac{35}{}}}}$	$a_{n}=5+3 n, b_{n}=-(n+1)(2 n-1)$
new and proven	$\frac{e}{6-2 e}=5-\frac{1}{6-\frac{2}{7-\frac{3}{8-\leq}}}$	$a_{n}=5+n, b_{n}=-n$	new and proven	$\frac{4}{-8+3 \pi}=3-\frac{1}{6-\frac{6}{9-\frac{15}{12-25}}}$	$a_{n}=3+3 n, b_{n}=-n(2 n-1)$
new and proven	$\frac{1}{-16+6 e}=3+\frac{1}{4+\frac{2}{5+\frac{3}{6+\leq}}}$	$a_{n}=3+n, b_{n}=n$	new and proven	$\frac{8}{-8+3 \pi}=6-\frac{3}{9-\frac{12}{12-\frac{25}{15-\underline{42}}}}$	$a_{n}=6+3 n, b_{n}=-(n+2)(2 n-1)$
new and unproven	$\frac{6 e}{-3+2 e}=7-\frac{4}{14-\frac{40}{23-\frac{54}{34-112}}}$	$a_{n}=n(n+6)+7, b_{n}=-(n+3) n^{2}$	new and proven	$\frac{\pi}{4-\pi}=4-\frac{2}{7-\frac{9}{10-\frac{20}{13-\frac{35}{-}}}}$	$a_{n}=4+3 n, b_{n}=-(n+1)(2 n-1)$
new and proven	$\frac{e}{-2+e}=4-\frac{1}{5-\frac{2}{6-\frac{3}{7-4}}}$	$a_{n}=4+n, b_{n}=-n$	new and proven	$\frac{2}{10-3 \pi}=4-\frac{3}{7-\frac{10}{10-\frac{21}{13-\frac{36}{}}}}$	$a_{n}=4+3 n, b_{n}=-n(2 n+1)$
new and proven	$\frac{1}{-5+2 e}=2+\frac{1}{3+\frac{2}{4+\frac{3}{5+4}}}$	$a_{n}=2+n, b_{n}=n$	new and proven	$\frac{2 \pi+8}{\pi}=5-\frac{3}{8-\frac{12}{11-\frac{25}{14-\frac{12}{22}}}}$	$a_{n}=5+3 n, b_{n}=-(n+2)(2 n-1)$
new and unproven	$\frac{3}{-10+4 e}=3+\frac{4}{8+\frac{20}{15+\frac{5412}{24+12}}}$	$a_{n}=(n+1)(n+3), b_{n}=-(n+3) n^{2}$	new and proven	$\frac{2}{-2+\pi}=2-\frac{1}{5-\frac{6}{8-\frac{15}{11-28}}}$	$a_{n}=2+3 n, b_{n}=-n(2 n-1)$
new and proven	$e=3-\frac{1}{4-\frac{2}{5-\frac{3}{6-\Psi}}}$	$a_{n}=3+n, b_{n}=-n$	new and proven	$\frac{6}{-8+3 \pi}=5-\frac{5}{8-\frac{14}{11-\frac{14}{14-44}}}$	$a_{n}=5+3 n, b_{n}=-n(2 n+3)$
new and proven	$\frac{1}{-2+e}=1+\frac{1}{2+\frac{2}{3+\frac{3}{4+\leq}}}$	$a_{n}=1+n, b_{n}=n$	new and proven	$1+\frac{\pi}{2}=3-\frac{2}{6-\frac{9}{9-\frac{20}{12-\frac{35}{35}}}}$	$a_{n}=3+3 n, b_{n}=-(n+1)(2 n-1)$
known	$\frac{1}{-1+e}=\frac{1}{1+\frac{2}{2+\frac{3}{3+\underline{\leq}}}}$	$a_{n}=n, b_{n}=n$	new and proven	$\frac{2}{4-\pi}=3-\frac{3}{6-\frac{10}{9-\frac{21}{12-\frac{36}{36}}}}$	$a_{n}=3+3 n, b_{n}=-n(2 n+1)$
new and proven	$\frac{e}{-1+e}=2-\frac{1}{3-\frac{2}{4-\frac{3}{5-4}}}$	$a_{n}=2+n, b_{n}=-n$	new and proven	$\frac{2}{\pi}=1-\frac{1}{4-\frac{6}{7-\frac{15}{10-\frac{25}{2 x}}}}$	$a_{n}=1+3 n, b_{n}=-n(2 n-1)$
new and unproven	$\frac{4 e}{-1+2 e}=3-\frac{3}{7-\frac{16}{13-\frac{45}{21-26}}}$	$a_{n}=n(n+3)+3, b_{n}=-(n+2) n^{2}$	known	$\frac{4}{\pi}=1+\frac{\frac{1}{}^{2}}{2+\frac{3^{2}}{2+\frac{5^{2}}{27^{2} \ldots}}}$	$a_{n}=2, b_{n}=(2 n-1)^{2}$

Raayoni, G., Gottlieb, S., Manor, Y. et al. Nature 590, 67-73 (2021)

Factorial Reduction

$$
\begin{array}{ccccc}
\frac{4}{\pi}=1+\frac{n=1}{3+\frac{2^{2}}{5+\frac{3^{2}}{7+\ddots}}:} & \frac{4}{3} & \frac{n=5}{29520} & \frac{n=10}{200370793600} & \frac{n=15}{78831037440}
\end{array}
$$

Factorial Reduction-based Search

- Search for continued fractions with this new property
- Extremely rare in random continued fractions
- Appears in all historical examples
- Appears in all the examples that we found to express mathematical constants
- Open question: Which continued fractions have factorial reduction? How to identify them in advance?

Factorial Reduction-based Search

- The Goal: Automatic Generation of conjectures on Fundamental Constants
- Algorithms
- Distributed Computing Community
- Mathematical Discoveries
- Future Developments

The Power of the People

Come join us!

www.ramanujanmachine.com

```
The Ramanujan Machine on BOINC Project v Computing v Community v Site v
```

Team search results
The following teams match one or more of your search criteria. To join a team, click its name to go to the team page, then click Join this team
Team name
Description

TeAm AnandTech

Welcome to TeAm AnandTech! Here you will find plenty of great folks who would be glad to help you with the technical side of setting up and running distributed computing applications. You will find people who are more passionate about numbers than some mathematicians. You will find a great community who enjoy having [slightly] off topic discussions and helping each other immensely in real life. Some projects look outward into space, to look for extraterrestrial life, pulsars, and other things. Others look around, to chart the development of life on the planet, or predict future weather patterns. Yet others look inward, to analyze the structure of atoms, molecules, or proteins. Each project can have a great impact on the development of science in its area, and you can help!

The AMD Users team is a team for users of AMD processors. This doesn't mean that you have to have all AMD machines, but ethically you should have at least one. Of course you can still join us, because in the end all this is for a good cause.

Team Starfire World BOINC is a small international team of long standing distributed computing enthusiasts and those new as well.

We have quite a few members into performance PCs and GPUs, open forums where we want everyone to feel comfortable. You'll find us to be a friendly and helpful group, to help you get started, solve any problem you may have, or join us in beta testing new projects.
pf4pe5tzmoqm 07/20/2022
PRETTY PLEASE *

My computers are hungry for tasks

Come join us!

Zhu He (June 21st, 2020)

Paul Michalski (July 18th, 2019)

$$
\frac{4}{\pi}=1+\frac{1}{1+\frac{4}{1+\frac{3}{1+\frac{8}{1+\ldots}}}}
$$

Have no time?
Let your com conjectures y

Éric Brier, David Naccache, and Ofer Yifrach-Stav
This team found an infinite family of continued fractions that generalizes many of the results from the first Ramanujan Machine paper. using it. Have named after

> Below is a beautiful example from their work.

$$
\frac{1}{\frac{25}{16}-\frac{9 \pi \tanh \left(\frac{\pi \sqrt{7}}{2}\right)}{8 \sqrt{7}}}=\frac{16}{3}-\frac{16}{23-\frac{-256}{\frac{316}{5}-\frac{1764}{\ddots}+\frac{-n^{2}\left(n^{2}+n+2\right)^{2}}{\frac{2 n^{4}+11 n^{3}+27 n^{2}+36 n+16}{n+3}+\ddots}}}
$$

Come join us!

www.ramanujanmachine.com

new

s. Have an

Details:

- The Goal: Automatic Generation of conjectures on Fundamental Constants
- Algorithms
- Distributed Computing Community
- Mathematical Discoveries
- Future Developments

New results in Irrationality Measure

Constant	Polynomials	Rates
$-2565+\frac{-29}{2-2 G}$	$\begin{aligned} a_{n}= & -3520 n^{6}-36608 n^{5} \\ & -156944 n^{4}-354816 n^{3} \\ & -445924 n^{2}-295296 n-80503 \\ b_{n}= & 16\left(20 n^{2}+88 n+97\right) \\ & \left(20 n^{2}+8 n+1\right) \\ & (2 n+3)^{4}(n+1)^{4} \end{aligned}$	$\begin{aligned} & \frac{\text { digits }}{\text { term }}=2.089 \\ & \delta \approx 0.475 \end{aligned}$
$\frac{6837281250}{\frac{639760475}{-90 G+83}}$	$\begin{aligned} & \hline a_{n}=-2760376320 n^{10}-50376867840 n^{9} \\ &-410569703424 n^{8}-1967378104320 n^{7} \\ &-6136953513984 n^{6}-13018455614976 n^{5} \\ &-19015373884800 n^{4}-18879847107648 n^{3} \\ &-12191960479872 n^{2}-4623075148716 n \\ &-781542171975 \\ & b_{n}= 768\left(9984 n^{4}+92352 n^{3}+319648 n^{2}\right. \\ &+490660 n+281845)\left(9984 n^{4}+12480 n^{3}\right. \\ &\left.+5152 n^{2}+804 n+45\right)(6 n+11)(6 n+7) \\ &(4 n+7)^{2}(4 n+5)^{2}(2 n+3)^{2}(n+1)^{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{\text { digits }}{\text { term }}=3.432 \\ & \delta \approx 0.486 \end{aligned}$
$\begin{array}{r}8379744738750 G \\ +7653030992325 \\ \hline 150 G-137\end{array}$	$\begin{aligned} \hline a_{n}= & -173562407936 n^{10}-3162164418560 n^{9} \\ & -25716188549888 n^{8}-122904265036800 n^{7} \\ & -382183637133696 n^{6}-807761798088192 n^{5} \\ & -1174839578203360 n^{4}-1160771163760576 n^{3} \\ & -745418795117500 n^{2}-280881243796872 n \\ & -47150062304895 \\ b_{n}= & -27648\left(71248 n^{4}+656848 n^{3}+2263800 n^{2}\right. \\ & +3457460 n+1974761)\left(71248 n^{4}+86864 n^{3}\right. \\ & \left.+32664 n^{2}+4500 n+225\right)(6 n+11)^{2}(6 n+7)^{2} \\ & (3 n+5)(3 n+4)(2 n+3)^{2}(n+1)^{4} \end{aligned}$	$\begin{aligned} \frac{\text { digits }}{\text { term }} & =3.663 \\ \delta & \approx 0.51 \end{aligned}$
X_{1}	$\begin{array}{r} a_{n}=C_{1}(n) * A_{1}(n+1)+C_{1}(n+1) * D_{1}(n) \\ \quad b_{n}=-C_{1}(n-1) * C_{1}(n+1) * B_{1}(n) \end{array}$	$\begin{aligned} \frac{\text { digits }}{\text { term }} & =10.977 \\ \delta & \approx 0.462 \end{aligned}$
X_{2}	$\begin{array}{r} a_{n}=C_{2}(n+1) * A_{2}(n+2)+C_{2}(n+2) * D_{2}(n+1) \\ b_{n}=-C_{2}(n) * C_{2}(n+2) * B_{2}(n+1) \end{array}$	$\begin{aligned} \frac{\text { digits }}{\text { term }} & =13.839 \\ \delta & \approx 0.4325 \end{aligned}$

Conserving Matrix Fields

α	a_{n}	b_{n}	Formula	
0	$n^{3}+(n+1)^{3}$	$-n^{6}$	$\frac{1}{\zeta(3)}$	
1	$n^{3}+(n+1)^{3}+4(2 n+1)$	$-n^{6}$	$\frac{1}{1-\zeta(3)}$	
2	$n^{3}+(n+1)^{3}+12(2 n+1)$	$-n^{6}$	$\frac{8}{9-8 \zeta(3)}$	
3	$n^{3}+(n+1)^{3}+24(2 n+1)$	$-n^{6}$	$\frac{216}{216 \zeta(3)-251}$	
\ldots				
α	$n^{3}+(n+1)^{3}+2 \alpha(\alpha+1)(2 n+1)$	$-n^{6}$	$-\frac{2}{\psi^{(2)}(1+\alpha)}$	

- Formal proof for irrationality of $\zeta(3)$!
- Systematic process
- Can be repeated to other constants

- The Goal: Automatic Generation of conjectures on Fundamental Constants
- Algorithms
- Distributed Computing Community
- Mathematical Discoveries
- Future Developments

Library of Integer Relations and Constants

- Publicly accessible
- Convenient interface

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0
$$

Thank you!

- The Goal: Automatic Generation of conjectures on Fundamental Constants

- Algorithms
- Distributed Computing Community
- Mathematical Discoveries

$$
\frac{1}{\zeta(5)-\zeta(4)+\zeta(3)-\zeta(2)+1}
$$

Raayoni, Gal, et al. "Generating conjectures on fundamental constants with the Ramanujan Machine." Nature 590.7844 (2021): 67-73.
Razon, Ofir, et al. "Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences." arXiv preprint arXiv:2212.09470 (2022).

Elimelech, Rotem, et al. "Algorithm-assisted discovery of a hierarchy in mathematical constants." In preparation
David, Ofir, et al. "The conservative matrix field." In preparation

Irrationality criteria

Definition: The irrationality measure of $L \in \mathbb{R}$ is the largest δ for which there exist a rational sequence $p_{n} / q_{n} \neq L$ s.t.

$$
\left|L-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n}^{1+\delta}}
$$

Theorem (Roth's): The irrationality measure of L

$$
\delta=\left\{\begin{aligned}
0 & \text { for L rational } \\
1 & \text { for L algebric irrational } \\
\geq 1 & \text { for L trancdental }
\end{aligned}\right.
$$

Conclusion: If we find even one sequence with $\boldsymbol{\delta}>\boldsymbol{0} \Longrightarrow \boldsymbol{L}$ is irrational

