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▪ The potential of PIL NLTE Surrogates motivates further study
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Step 2, Surrogate is trained
• Surrogate learns output correlation informed by physically 

important PIL loss term and a traditional loss on embedded space
• λEmb hyper parameter controls weight ratio of PIL/Traditional

Step 3, Inference
• Encoder from step 1 disregarded
• PIL disregarded
• Output is reconstructed using decoder from step 1

PIL model predictions are highly correlated in most 
radiation bins

• Mean model loss decreases with PIL 

weight in λEmb 

• λModel  can be used to balance PIL 
learning targets and NLTE prediction 
artifacts

Initial Results

Summary and Future Work

▪ PIL reformulation emphasizes physically important quantities to the
surrogate model, making PIL networks focus on important physical
correlations in non-Local Thermodynamic Equilibrium (NLTE) outputs

▪ Loss function hyperparameter adjusts surrogate learning to emphasize PIL
reformulation or traditional correlations in the original data set

▪ We are exploring integrating PIL surrogates into a complete multiscale ICF
model to explore the tradeoffs of our work in computational efficiency and
stability

• We swept multiple PIL 
network λ hyper parameters

• Target was highest R2 
correlation

λModel =[λEmb , λTraditional, λSurrogate ]

Loss =λEmb A + (1-λEmb) B
CRETIN output predictions

PIL and traditional learning target different aspects of data modeling
• PIL targets important radiation transport values 
• PIL seeks to conserve energy
• Traditional seeks to directly reproduce our data set
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Step 1, CRETIN output Traditional Autoencoder trained
• Non-physical output correlation is learned
• Correlation mapped to low dimensional embedding

Encoder

NLTE Surrogates trade off between isolated and observed physics 

PIL models neglect certain 
dataset features

Traditional models neglect 
key physics in the dataset

Abstract Our Physically Informed Loss (PIL) Transforms the Output 
to Isolate Key PhysicsFor complex systems in basic scientific research, surrogate models promise

great speedups over traditional methods. However, traditional surrogates are
hampered during training by non-physical error formulations. Here we develop
a new Physics Informed Loss function (PIL) that targets important physics by
reformulating a surrogate’s output representation. Our PIL reformulation
introduces two transformations of opacity and emissivity, which emphasize
energy and radiation transport. PIL networks can reduce the necessary data by
focusing the learning task on key attributes of non-Local Thermodynamic
Equilibrium (NLTE) physics via a tunable hyperparameter. Future work will
explore integrating PIL surrogates into a complete multiscale Inertial
Confinement Fusion (ICF) model.
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Multiscale Physical Models of Inertial Confinement 
Simulations Are Compute Bound By “NLTE” models

On December 5 2022, LLNL achieved the first and historic controlled fusion 
ignition experiment, producing more fusion energy than the driving laser energy1)

ICF Radiation Hydrodynamic 
(RH) Simulation 2)

NIF Laser NLTE model
(CRETIN) 

Continuum

Ground state of ion Z

ion Z+1

▪ Temperature
▪ Density 
▪ Radiation Field

Input

Up to 90 % 
wall clock time

Radiation Transport

Network Architecture of CRETIN Surrogate 3)

Autoencoder (Encoder + Decoder)

determines a low-dimensional 
representation of high-dimensional data

Deep Jointly Informed Neural Networks 
(DJINNS)

maps from low dimension inputs to
low dimension outputs

• The traditional NLTE surrogate successfully speeds up ICF Hohlraum simulations but can be
prohibitively computationally expensive to train due to impractically large data volumes 
needed. We aim to more efficiently train by emphasizing physically relevant regimes during 
model fitting.

▪ δ: Net change in radiation energy - couples radiation to matter

▪We focus on learning radiation transport, only for physically 
important length scales

• δemphasizes data of physically interesting regions

Laser-heated plasmas
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• δ is the actual parameter used in radiation hydrodynamics simulations  

Low Density Gas (LDG)

Hohlraum for ICF
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Mesh for radiation 
hydrodynamics simulation

lmin ~ a few 
nanometers

Radiation goes through without 

any interaction of matter 

(l > lmax)

Radiation absorbed 

within zone 

(l < lmin)

• τ stretches out the information of interest and suppresses others 

Training Data Set

Radiation-hydrodynamic simulation (Kull)
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Absorption

Emission
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Each zone and time yields input/output

Energy exchange
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