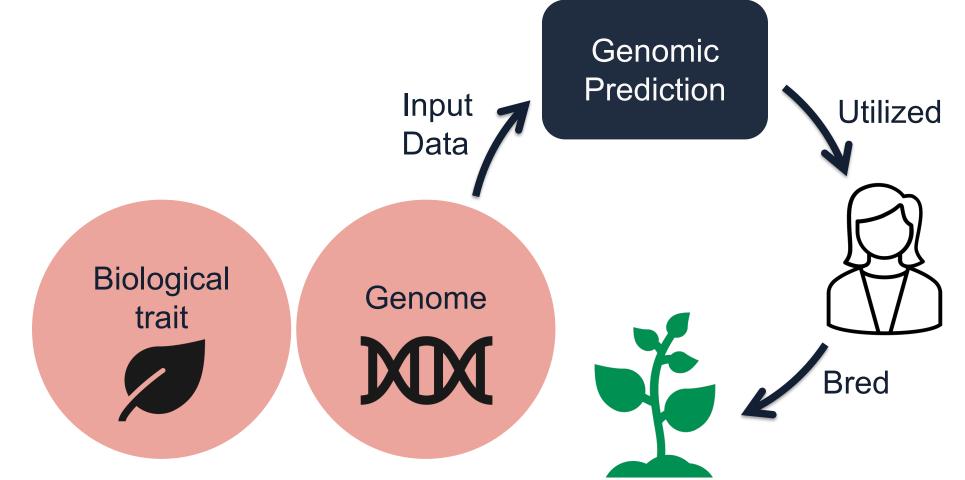
Towards Automating Highly Heritable Phenotype Discovery For Plant Breeding

Ruhana Azam^{1,3,}, Samuel B. Fernandes², Mohammed El-Kebir¹, Sanmi Koyejo³, Alexander E. Lipka¹, Andrew D.B. Leakey¹ (1) University of Illinois at Urbana-Champaign, (2) University of Arkansas, (3) Stanford University

Motivation

• Plant breeders utilize statistical methods (e.g. Genomic Wide Association Study) to predict highly desirable traits in plants.



- Genomic prediction models are trained on biological traits (e.g. nitrogen per leaf area) which are **expensive and labor intensive** to measure.
- Alternatively, prediction models can be trained using low-cost traits (e.g. hyperspectral data) that are correlated with biological traits of interest. [1]
- Highly-heritable low-cost traits can improve genomic prediction accuracy of high-cost, low-heritability traits [1]

Background

What is heritability?

• Heritability is the portion of population variance explained by genetic factors

 \succ Ideal to breed for traits reliant on genetic factors.

• Heritability (h²) is calculated via variance factors from fitting mixed models by using genetic and environmental factors to predict the trait of interest (t).

$$h^2(\sigma_t^2, \sigma_{\text{gene x env}}^2) = \frac{\sigma_t^2}{\sigma_t^2 + \sigma_{\text{gene x env}}^2 + \sigma_{\text{erre}}^2}$$

What are synthetic traits?

- Synthetic traits are functional combination of multiple low-cost traits (e.g. t_1/t_2 , $t_1 + t_2/t_3$)
- Search space grows exponentially with function complexity!

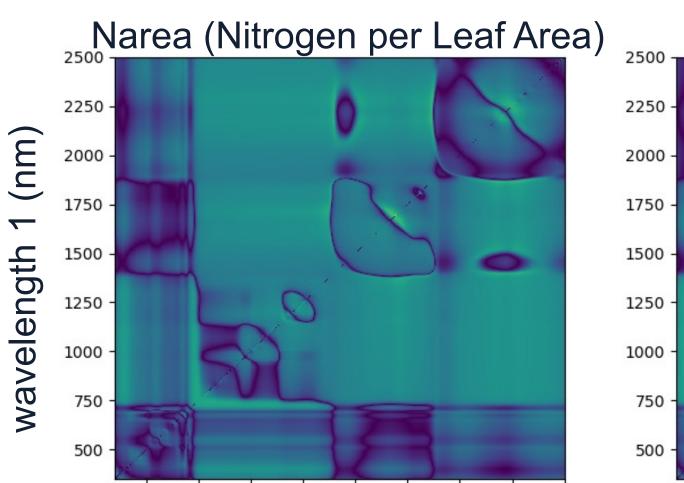
 $\operatorname{argmax}_{t_1 \dots t_n} h^2(t_1 \dots t_n)$ **Problem:**

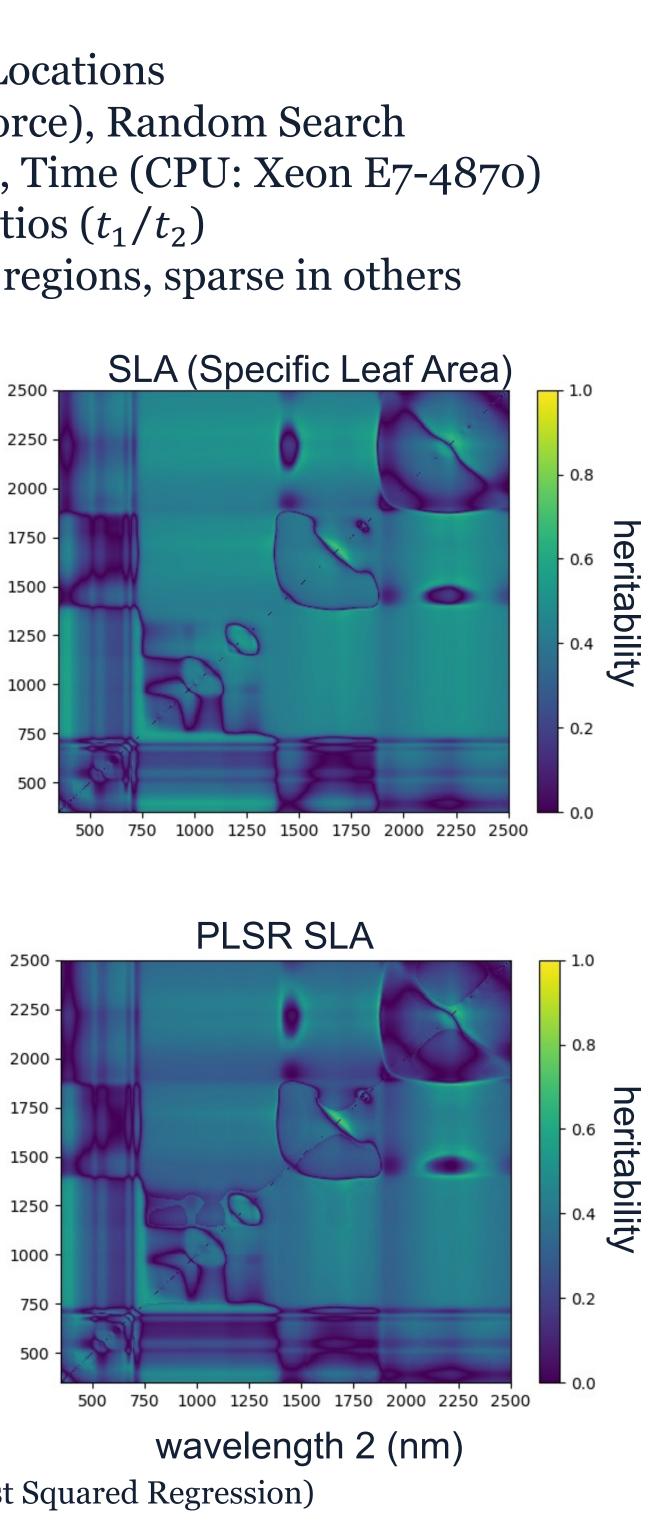
> How do we discover highly-heritable synthetic traits in large trait spaces?

or

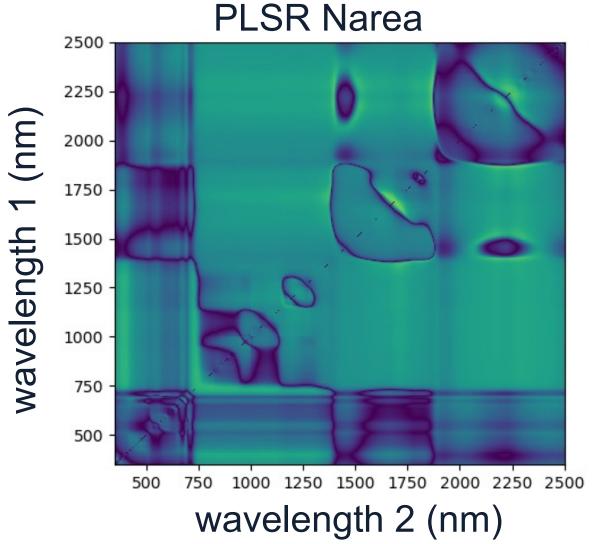
Experimental Setup

Dataset: 836 Sorghum lines, 2 Locations **Baseline:** Grid Search (Brute-Force), Random Search **Evaluation**: Number of Queries, Time (CPU: Xeon E7-4870) **Synthetic Trait**: Wavelength ratios (t_1/t_2) Search Space: Smooth in large regions, sparse in others





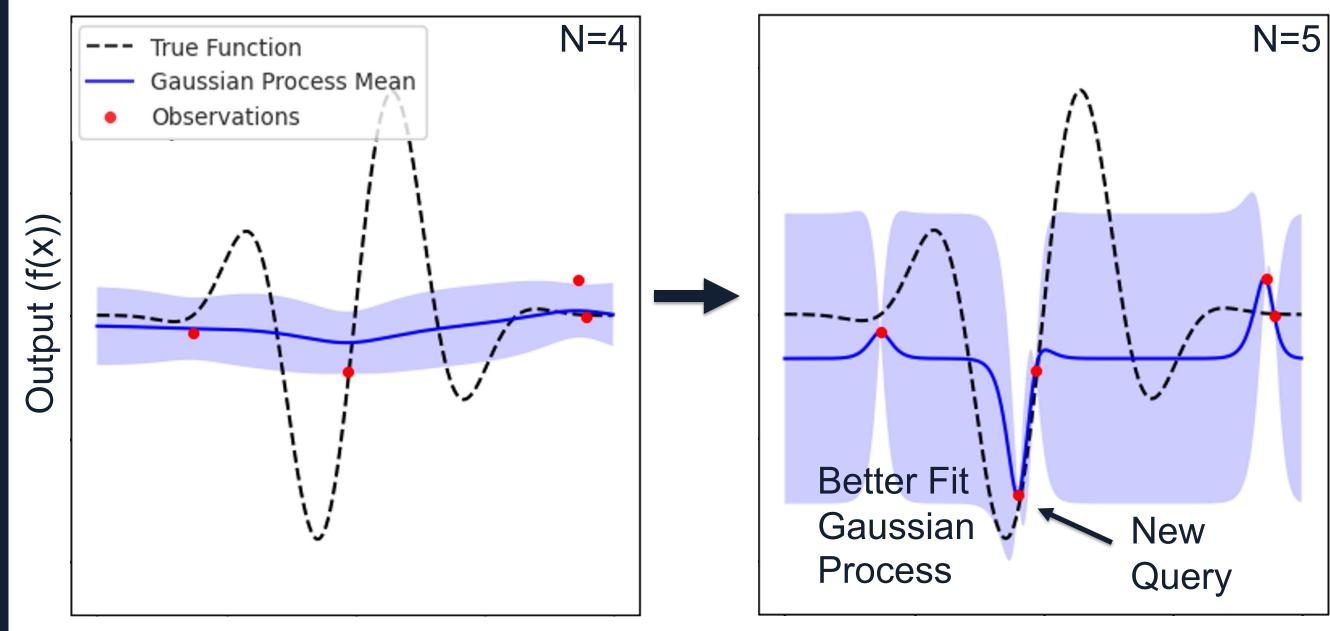
1250 1500 1750 2000 2250 2500



*PLSR = Partial Least Squared Regression)

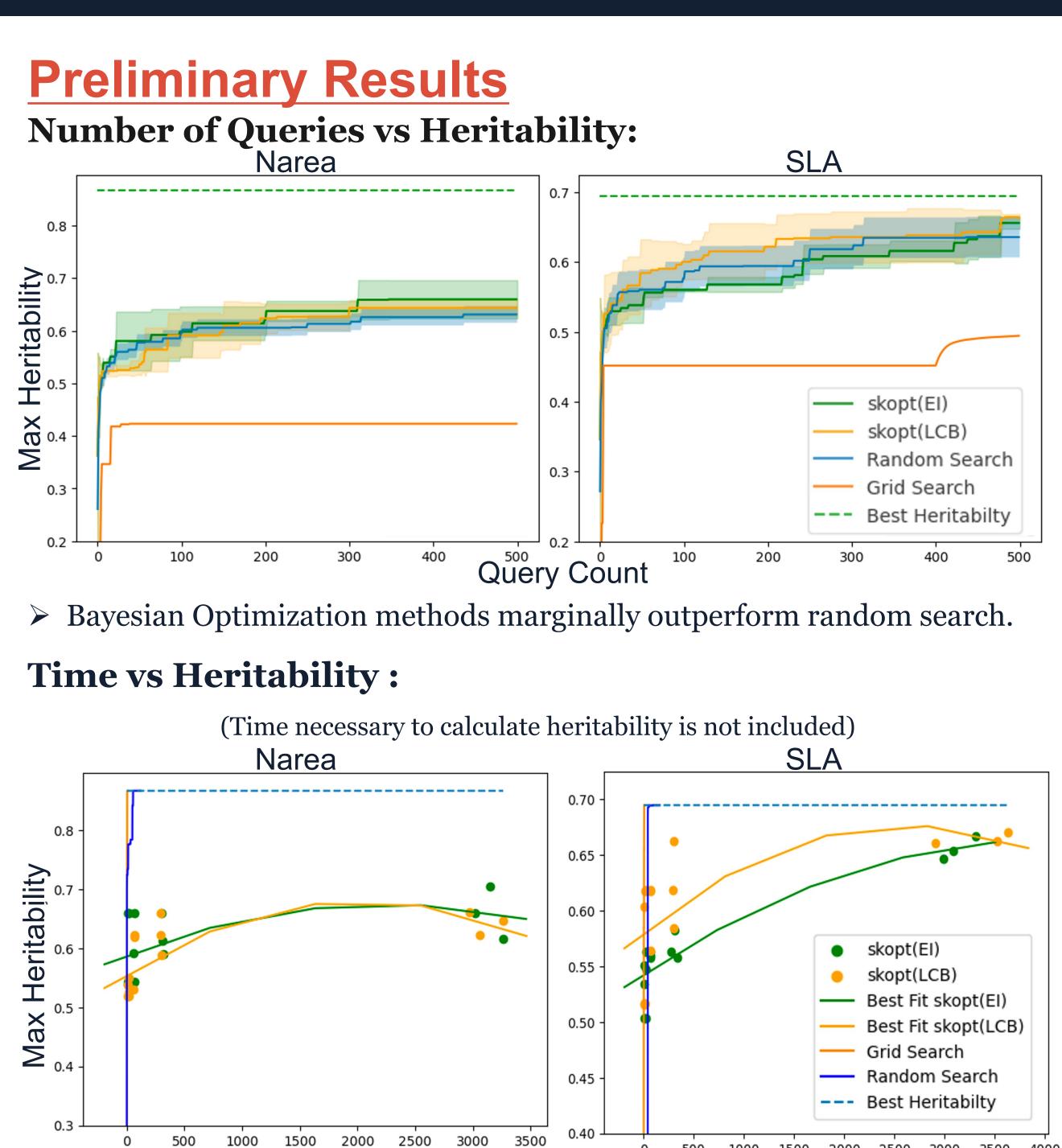
Approach

Black box Search with Bayesian Optimization (BO) Blind to the heritability function initially and learns the function from querying low-cost traits.



Input (x)

- 1) Uses Gaussian Process as surrogate to model an unknown function
- 2) Acquisition function, such as expected-improvement (EI), balances issues of **exploration-exploitation** to find the best next query.



Time (seconds) > Baseline methods find highly-heritable traits significantly faster than

Bayesian Optimization methods. (Results above are representative of trends shown by other traits tested)

Conclusion

- trade-offs over query number and time.

Future Work:

- both large?

References

[1] Fernandes, S. B., Azam, R. N., Paul, R. E., Yuan, M., El-Kebir, M., Koyejo, S., Lipka, A. E., Leakey, A. (2023). Including High-Throughput Phenotyping Derived Traits in Multi-Trait Genomic Analysis. Presented at the CSSA: Translational Genomics Workshop, Plant and Animal Genome XXI Conference.

• When searching wavelength ratio (t_1/t_2) , random search shows best

Bayesian optimization performs well when comparing number of queries. • Unclear if random search will be exasperated in larger search spaces.

\blacktriangleright Expand search to larger function classes (e.g. t1 + t2 / t3) > How to deal with search problems where search space and query time are

#