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● Aim: 

○ Synthesise useful compounds

● Method:

○ Tuning for correct precursors

○ Engineering of metabolic networks

○ Examination of phenotypes

Importance to Synthetic Biology



Exemplary metabolic network

King et al. 2004

m1 + m2↔m3 + m4



Efficiently learn and navigate genome-scale metabolic networks?

iML1515 (Monk et al. 2017), 100 times increase in model complexity 



Reduce cost and design space?

1515 genes + 2719 reactions

£££
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● Automate Design, Build, Test, Learn

○ Rapid inferences

○ Hypothesis space reduction

○ Cost minimisation

Model-Comprehend
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codes(gene_b, e_b).

reaction(m1, m3).

enzyme(e_b, m1, m4). 

metabolite(m1).



Build LearnDesign Test

Human comprehension tests

Model

Comprehend
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Abduction

p ←q ∧ r

● Phenotypes in various nutrient media

● Simulation based on metabolite saturation

● Hypothesise gene functions to explain data

Experiment data:

phenotypic_effect(Gene, Nutrients).

Hypothesis:

codes(Gene, Enzyme).



% description of effect using metabolic network

phenotypic_effect(Gene, Medium):-

% abduced fact

codes(Gene, Enzyme),

cant_use_enzyme(Enzyme),

%metabolic pathways

metabolic_path(Medium, Metabolites),

no_essential_molecule(Metabolites).

…

Metabolite saturation 

Enzymes/reactions



Novel matrix encoding

1 1 0 0
0 0 1 0
0 0 0 1
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Active learning

a) Binary discrimination of hypotheses

b) Approx. minimum cost binary decision tree

e3 e5

1 0…

…

…
1 1

… …
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Time per 
simulation

Robot Scientist 
(King et al. 

2004)
MC

Without 
multi-threads ≈250s ≈0.6s

With 
multi-threads

20 cpus
 ≈27s ≈0.06s

> 4000 times better in runtime



10 times saving in cost
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● To automate metabolic network engineering

● Overcome network complexity

○ 4000+ times better runtime

● Experimental design

○ 10 times lower cost

○ Most informative trials

Summary



● Generalisation of framework

○ Quantification

○ Multi-clause theories

● Optimisation of metabolic network

○ Validate hypotheses (CRISPRi)

○ Multiple gene loci

● Hypothesis comprehensibility (Ai et al. 2021)

Future work
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% static knowledge

codes(gene_b, e_b).

codes(gene_c, e_c).

codes(gene_e, e_e). 

… 

metabolic_step(n1, m3).

metabolic_step(n1, m4). 

…

enzyme(e_a, n1, m3).

enzyme(e_b, n1, m4). 

essential molecule(m7).

essential molecule(m8).

Logical knowledge base

% description of effect using metabolic network

phenotypic_effect(Gene, Medium):-

% abduced fact

codes(Gene, Enzyme),

cant_use_enzyme(Enzyme),

%metabolic pathways

metabolic_path(Medium, Metabolites),

no_essential_molecule(Metabolites).



Four metabolites: m1, m2, m3, m4

Two orfs: g1, g2

Initial metabolic state: m1, m2,m3

Representation: [1, 1, 1, 0]

Logic encoding: mstate(0, 14)



Product matrix (Pm)

enz1: 0,0,1,1
enz2_f: 0,0,0,1
enz2_b: 0,0,1,0

Reactions:

enz1: m1 + m2 -> m3 + m4

enz2: m3 <-> m4

Genes:

codes(g1, enz1)

codes(g2, enz2)

 

Reactant matrix (Rm)

enz1: 1,1,0,0
enz2_f: 0,0,1,0
enz2_b: 0,0,0,1



(3) lm product

(1) lm subset

State S: 
[1,1,1,0]

1,1,0,0
0,0,1,0
0,0,0,1

0,0,1,1
0,0,0,1
0,0,1,0

Reactions: 
[1,1,0]

(2) KO enzyme Enz1 
[1,0,0]

Reactions:
[0,1,0]

New metabolite(s): 
[0,0,0,1]

Rm

Pm

New state S’: 
[1,1,1,1]

KO g1



(3) lm product

(1) lm subset

State S: 
[1,1,1,0]

1,1,0,0
0,0,1,0
0,0,0,1

0,0,1,1
0,0,0,1
0,0,1,0

Reactions: 
[1,1,0]

(2) KO enzyme Enz1 
[1,1,0]

Reactions:
[0,0,0]

New metabolite(s): 
[0,0,0,0]

Rm

Pm

State unchanged: 
[1,1,1,0]

KO g1 + g2


