

Human Comprehensible Active Learning of Genome-Scale Metabolic Networks

Lun Ai¹, Shishun Liang², Wang-Zhou Dai³, Liam Hallett², Stephen H. Muggleton¹, Geoff S. Baldwin²

¹Department of Computing, Imperial College London, UK ²Department of Life Science, Imperial College London, UK ³School of Intelligence Science and Technology, Nanjing University, China

[□]lun.ai15@imperial.ac.uk

Outline

- Scientific problem
- Framework
- Novel matrix approach
- Results
- Summary

Importance to Synthetic Biology

- Aim:
 - Synthesise <u>useful compounds</u>
- Method:
 - <u>Tuning</u> for correct precursors
 - Engineering of <u>metabolic networks</u>
 - Examination of <u>phenotypes</u>

Exemplary metabolic network

m1 + m2↔m3 + m4

King et al. 2004

Efficiently learn and navigate genome-scale metabolic networks?

iML1515 (Monk et al. 2017), 100 times increase in model complexity

Reduce cost and design space?

<u>**1515**</u> genes + <u>**2719**</u> reactions

- Scientific problem
- Framework
 - Model-Comprehend
- Novel matrix approach
- Results
- Summary

Model-Comprehend

• Automate Design, Build, Test, Learn

- Rapid inferences
- Hypothesis space reduction
- Cost minimisation

Model

- Scientific problem
- Framework

Novel matrix approach

- 1. <u>Abduction</u>
- 2. Active learning
- Results
- Summary

Abduction

$p \leftarrow q \land r$

- Phenotypes in various nutrient media
- Simulation based on metabolite saturation
- Hypothesise <u>gene functions</u> to explain data

Experiment data:

Hypothesis:

phenotypic_effect(Gene, Nutrients).

codes(Gene, Enzyme).

Enzymes/reactions

Metabolite saturation

% description of effect using metabolic network phenotypic_effect(Gene, Medium):-% abduced fact codes(Gene, Enzyme), cant_use_enzyme(Enzyme), %metabolic pathways metabolic_path(Medium, Metabolites), no_essential_molecule(Metabolites).

Active learning

- a) Binary discrimination of hypotheses
- b) Approx. minimum cost binary decision tree

- Scientific problem
- Framework
- Novel matrix approach

• <u>Results</u>

- Runtime improvement
- Cost reduction
- Summary

> 4000 times better in runtime

Time per simulation	Robot Scientist (King et al. 2004)	MC
Without multi-threads	<u>≈250s</u>	≈0.6s
With multi-threads 20 cpus	≈27s	<u>≈0.06s</u>

10 times saving in cost

- Scientific problem
- Framework
- Novel matrix approach
- Results
- <u>Summary</u>

Summary

- To automate metabolic network engineering
- Overcome network complexity
 - 4000+ times better runtime
- Experimental design
 - 10 times lower cost
 - Most informative trials

Future work

- Generalisation of framework
 - Quantification
 - Multi-clause theories
- Optimisation of metabolic network
 - Validate hypotheses (CRISPRi)
 - Multiple gene loci
- Hypothesis comprehensibility (Ai et al. 2021)

Lun Ai

Email: <u>lun.ai15@imperial.ac.uk</u>

Website: https://lai1997.github.io/

Linkedin: https://www.linkedin.com/in/lun-ai-46481a128/

MODEL

Logical knowledge base

% description of effect using metabolic network phenotypic_effect(Gene, Medium):-% abduced fact codes(Gene, Enzyme), cant_use_enzyme(Enzyme), %metabolic pathways metabolic_path(Medium, Metabolites), no essential molecule(Metabolites).

% static knowledge codes(gene_b, e_b). codes(gene_c, e_c). codes(gene_e, e_e). metabolic_step(n1, m3). metabolic_step(n1, m4). enzyme(e_a, n1, m3). enzyme(e_b, n1, m4). essential molecule(m7). essential molecule(m8).

Four metabolites:	m1, m2, m3, m4
Two orfs:	g1, g2
Initial metabolic state:	m1, m2,m3
Representation:	[1, 1, 1, 0]
Logic encoding:	mstate(0, 14)

KO g1

KOg1+g2

