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The field of computational scientific discovery aims to construct interpretable laws and models that
are stated in established scientific formalisms. Early research in this area emphasized induction
of algebraic equations from quantitative data (e.g., Langley, 1981; Langley & Żytkow, 1989), but
mature disciplines move beyond such descriptive summaries to explain observations in deeper terms.
One important class of such accounts involves linked differential equations that predict multivariate
trajectories when simulated, and there is a substantial body of work on inducing them from time
series (e.g., Džeroski & Todorovski, 1995). However, scientific publications also refer to underlying
processes that these models instantiate, which suggests an additional discovery challenge.

In previous work (Langley, Sanchez, Todorovski, & Džeroski, 2002; Bridewell, Langley, Todor-
ovski, & Džeroski, 2008), we have defined a quantitative process model as a collection of processes,
each having one or more differential equations and a set of numeric parameters. Examples include
process accounts of population dynamics and chemical reaction networks. The effects of processes
are additive, so one can compile any such model into a set of differential equations and simulate its
behavior over time. Process models are causal in that they specify how some changes in variables
depend on others (Langley, 2019) and they are interpretable in that they draw on a formalism that
is familiar to scientists in many different disciplines.

We have also defined inductive process modeling as the task of discovering such models from
multivariate time series and background knowledge about the domain (Langley et al., 2002). We
can state this problem in terms of inputs and outputs:

• Given: A set of typed variables and observed trajectories for their values over time;
• Given: A subset of these variables whose values one wants to explain;
• Given: Knowledge about types of processes that might explain the observations;
• Find: A process model that reproduces the observed trajectories, explains them in terms of

known processes, and predicts future values.

Background knowledge includes generic processes, each of which specifies a set of variable types,
one or more differential equation forms, and ranges for their parameter values. Knowledge can also
provide constraints on how to combine processes into models (Bridewell & Langley, 2010).

We can characterize the computational discovery of quantitative process models in terms of a
constrained search through two distinct but connected spaces:

• A discrete space of model structures, each of which comprises a set of processes that specify
variables and equations that relate them but not the latter’s parameter values.

• A continuous space of model parameters for a given structure, typically with bounds on values
specified in the generic versions of its processes.

The modular character of process models affords the automated construction of candidate model
structures, but their evaluation requires some metric such as quantitative fit to target observations.
This in turn requires estimation of parameters for these candidates, as they are needed to simulate
the models and generate predicted trajectories.

We have developed a number of systems for process model induction and tested them on ob-
servational (nonexperimental) data from a variety of domains. These have included natural data
sets from ecology, hydrology, and biochemistry, as well as challenging synthetic data for chemical
reactions and population dynamics (Bridewell et al., 2008). Extensions have mitigated overfitting



with ensembles, estimated missing observations with iterative optimization (Bridewell et al., 2006),
and explained spatio-temporal phenomena with partial differential equations (Park et al., 2010).
However, early systems used exhaustive search through the structure space, so they did not scale
well to models with many variables or structures. They also relied on gradient descent through the
parameter space, which often halted at local optima and required random restarts.

More recent work has reformulated the task by assuming that each process has an algebraic
rate expression and that derivatives are proportional to this rate (Langley & Arvay, 2015). This
assumption lets one carry out heuristic search through the space of model structures and use
multiple linear regression to estimate parameters. These features make process model induction
far more efficient, scaling well to many variables and processes, and more likely to find good-fitting
candidates. One impressive result has been the reconstruction of a food chain with 20 organisms
from time series of their populations (Langley, 2019). The new framework also makes it easy, when
the environment changes, to identify and repair the responsible processes (Arvay & Langley, 2016).

Inductive process modeling is a promising paradigm for computational scientific discovery that
incorporates a formalism familiar to scientists, takes advantage of knowledge about the problem
domain, produces meaningful results from moderate amounts of data, and generates interpretable
models that explain, not just describe, observations. Future research should develop systems that
devise experiments to discriminate among competing models, discover forms of entirely new pro-
cesses, and induce multi-scale models that operate at different temporal resolutions. Promising
applications include elucidating metabolic pathways in biochemistry, understanding ecological dy-
namics of human microflora, and generating designs for chemical production and synthetic biology.
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Džeroski, S., & Todorovski, L. (1995). Discovering dynamics: From inductive logic programming
to machine discovery. Journal of Intelligent Information Systems, 4 , 89–108.

Langley, P. (1981). Data-driven discovery of physical laws. Cognitive Science, 5, 31–54.
Langley, P. (2019). Scientific discovery, causal explanation, and process model induction. Mind &

Society , 18 , 43–56.
Langley, P., & Arvay, A. (2015). Heuristic induction of rate-based process models. Proceedings of

the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 537–544). Austin: AAAI Press.
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