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In basic scientific research, complex systems are typically modeled using multiscale physical systems, which
although accurate are barely computationally tractable. Surrogate models promise great speedups over traditional
methods, with deep learning models being particularly interesting since they can model “arbitrary” inputs and
outputs. However, traditional surrogates are hampered during training by non-physical error formulations which
can cause spurious simulation crashes.

In so-called Inertial Confinement Fusion (ICF) problems, the most computationally intensive step of multiscale
simulation is often the non-local thermodynamic equilibrium (NLTE) calculation (up to 90% of wall clock time).
NLTE input includes scalars such as the temperature and density of plasmas in space and time. And we typically
seek to model non-scalar output quantities, i.e., opacity and emissivity histograms of plasma resulting from a laser
drive to the system. Unfortunately, building a surrogate using the L2 type losses, typical in deep network training,
can introduce unstructured errors in which outputs are self-inconsistent, or even unphysical (do not preserve energy).

Here we develop a new Physics Informed Loss function (PIL) that targets inconsistency issues by reformulating a
surrogate’s output representation. Our PIL reformulation introduces two physical quantities transformed by opacity
and emissivity, which enforce physical constraints to the surrogate model in terms of energy and radiation transport:

Firstly we enforce an energy conservation constraint by requiring outputs be consistent with one another in a
physical way. In particular, we define system energy histogram bins, and within each bin, we tie the emissivity and
opacity outputs together in such a way that the surrogate targets energy conservation during training, rather than
an arbitrary correlation between emissivity and opacity. These quantities are appropriately scaled so that no one
bin is over-represented during training.

Secondly we regularize the training loss with a physically informed filtering that concentrates on spatiotemporal
regions where the NLTE code is a key part of the modeling stack within the multiscale simulation system. The filter
has two effects on the ‘mean free path’ of an energy bin, where the ‘mean free path’ energy (MFP) is indicative
of the energy state of plasma gas to be modeled. The first effect is to de-emphasize the large dynamic range that
the MFP can assume throughout system evolution, such that the network is better able to represent this physical
quantity. The second is to remove regions where the MFP is too low to be of interest (indicates that the region
contains material that is not plasma), and to remove regions where MFP is too high to be of interest (indicates
that the region is in vacuum). It is important to remove such regions during training since representing them is
complex, consuming surrogate modeling resources, yet the modeling power is wasted since NLTE is not useful to
the multiscale simulation as a whole in these regions.

With our techniques, we are able to model the plasmas dynamics of ICF in a physically plausible way due to
the energy conservation constraint, and an informationally efficient way due to the physically informed filtering.
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When training our networks we have sought to balance the learning objective of surrogate NLTE models between
a physics informed PIL training loss, which emphasizes the physics isolated by our energy conservation and
plasma state constraints, with a traditional learning objective that seeks only to accurately predict input and output
correlations.

Our preliminary results focus on ”λPIL”. λPIL is a hyper parameter knob controlling the emphasis of PIL on
Surrogate model learning and can be used in concert with other network specification parameters to tune overall
model loss on a ICF NLTE dataset built for copper Hohlraum simulations. Our design space hyper parameter sweep
of surrogate network architecture indicates a relationship between a large λPIL and low NLTE prediction error. In
other words, even though the PIL does not specifically target learning accurate NLTE prediction, using it seems to
guide our networks to learn a better correlation in the embedded space to reconstruct NLTE data than just trying
to learn such a correlation through traditional optimization.

In ongoing work we are exploring integrating PIL surrogates into a complete multiscale ICF model to explore
the tradeoffs of our surrogates in computational efficiency and stability.

In conclusion, PIL simulations provide more physically direct ways to model the underlying processes involved
in plasma hydrodynamics than traditional methods which tackles issues in traditional surrogates that can lead to
system crashes.


