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Background  
At Chalmers in Sweden we are building a next generation Robot Scientist "Genesis" (King et al., 2004, 
2009; Williams et al., 2015). Our goal is to demonstrate that the Robot Scientist Genesis can investigate 
an important area of science a thousand times more efficiently (in terms of cost and money) than human 
scientists. This is an extreme challenge for AI as the number of experiments to plan and coordinate is 
several orders of magnitude more than any previous work. Achieving this goal will involve advances 
in automated hypothesis formation (how best to utilise background biological knowledge and models 
in ML, etc.), automated experiment generation (how best to optimise gain of information with cost and 
time constraints), laboratory robotic control, and scientific data analysis. The application domain of 
Genesis is to develop a systems biology model of yeast (Saccharomyces cerevisiae), that is both more 
detailed and more accurate at predicting experimental results than any in existence (Coutant et al., 
2019). Modelling yeast, the ‘model’ eukaryote, is central to the future of medicine, agriculture, and 
biotechnology. The foundation of Genesis is a micro-fluidic system with 1000 computer-controlled μ-
bioreactors (co-developed in Vanderbilt University, USA). Achieving this will be a step-change in 
laboratory automation as most biological labs have <10 chemostats. These μ-bioreactors are being 
ingratiated with ion-flow mass-spectroscopy (to measure metabolites at speed) and RNA-seq (to 
measure RNA expression levels). 
 

   
Figure 1. (a) A test module for Genesis-Lab. (b) Overall structure of Genesis-Lab.  
 
Scientific Discovery and Abduction  
Metabolic network models represent the cellular biochemistry of an organism and the related action of 
enzymatic genes; such models which seek to integrate knowledge from the entire organism are known 
as genome-scale metabolic models (GEMs). GEMs require significant research effort to develop, which 
is expensive with regards to time, money and physical resource. The scientific discovery problem for 
improvement of GEMs is to add or remove knowledge (reactions, protein rules, etc.) such that model 
quality is increased. Model quality in GEMs is multi-faceted—desirable properties of a model include 
predictive power (how well deductions using the model match experimental data), network coverage 
(the extent to which different parts of metabolism are represented in the model) and parsimony, and 
there is evidence to suggest that there are trade-offs between different desirable properties (Heavner & 
Price, 2015). Examples of improvements to GEMs of S. cerevisiae including improving annotation, 
removing noise from low-confidence components, and adding reactions to eliminate so-called “dead-
end” compounds. 
 
Automated techniques are one promising way to make scientific discoveries within systems biology at 
the scale and pace required for automated science. We have constructed a logical theory of yeast 
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metabolic pathways using curated GEMs as the expert knowledge source. First-order logic enables the 
rich expression of knowledge about biological processes. Mechanisms such as reactions, enzyme 
catalysis and gene regulation can be expressed independently of specific genes, species or enzymes. 
Model improvement consists broadly of three stages: (1) hypothesise refinements to the model; (2) 
convert hypotheses and resultant model to a format suitable for simulation; and (3) perform an 
evaluation informed by experimental evidence and internal consistency (Thiele & Palsson, 2010). We 
use the automated theorem proving software iProver (Korovin, 2008) for each of these stages. 
 
We show that by conducting deductive inference on the GEM-based logical theories using iProver we 
can predict the growth/no-growth phenotype in S. cerevisiae for combinations of genotype and 
environment (growth medium). In cases where these deductions are empirically incorrect we are using 
iProver to abduce hypotheses consisting of combinations of compounds whose presence would result 
in an error correction for several genes. These abductions represent gaps in the model, possibly from a 
missing reaction that produces the compound. For each of the 56 NGG errors (predicted non-growth, 
observed growth) in the single-gene deletion task, we abduced hypotheses using iProver. In total we 
generated 2,649 unique hypotheses; some hypotheses would result in an error correction for several 
genes. We filtered these hypotheses based on biological knowledge to produce 765 more probable 
hypotheses to evaluate. For these we apply two criteria for assessing the merit of each hypothesis. 
Firstly, we use the reactions activated in the proof found by iProver for each hypothesis to constrain 
simulations. Secondly, we repeat the single-gene essentiality prediction task using the initial theory 
with the hypothesis added. We are now integrating this hypotheses testing with empirical experiments 
in Genesis. 
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