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Learning first-principle physics models directly from experiment data has been a grand goal of Artificial 

Intelligence, and will greatly accelerate the pace of scientific discoveries if succeeded. Nevertheless, despite 

a lot of exciting effort 6-20, AI-driven scientific discovery in a closed loop has not been fully realized, 

because of major computational bottlenecks, particularly, the lack of end-to-end frameworks embedding 

large-scale simulation of physics models into learning, and the lack of efficient algorithms to accelerate not 

only the forward simulation, but the even more computational demanding backward gradient propagation. 

We address these key computational bottlenecks in AI-driven scientific discovery by proposing: 

(1) an end-to-end framework3 to learn physics models in the form of Partial Differential Equations (PDEs) 

directly from the experiment data. In our framework, PDE solvers are formulated as fully differentiable 

neural network layers, allowing for seamless embedding of large-scale physics simulation into learning and 

efficient gradient propagation. We integrate two neural networks, one neural differential equation net 

simulating the temporal dynamics of PDEs, and the second recognition net extracting the values of PDE 

variables from data. Back-propagation is carried out through both networks to match the predicted values 

of PDE variables with experiment observations. Recently, a series of related research aim at learning partial 

differential equations from data. However, they did not achieve fully automatic physics model identification 

from experiment data because the input of these models are the trajectories of differential equations, which 

may be unavailable from experiment data and need to be extracted as a separate step. 

(2) We also propose to scale up learning first-principle models harnessing randomized algorithms1,2. We 

notice the temporal evolutions of many physical systems often consist of gradually changing updates across 

wide areas in addition to a few rapid updates concentrated in a small set of “interfacial” regions. In other 

words, the updates can be decomposed into the sum of a sparse signal in the value domain (for rapid updates 

in the interfacial regions) and another sparse one in the frequency domain (for gradual updates). This sparse 

decomposition allows us to accelerate both the “inner-loop” simulation and the “outer-loop” learning via 

randomized algorithms with provable guarantees on accuracy. Specifically, random projections can be used 

to handle sparse updates in compressed spaces for faster computation. Locality Sensitive Hashing (LSH) 

accelerates computation by handling similar updates at once. 

(3) Finally, careful experiment designs lead to faster identification of ground-truth physics models. In this 

direction, we build increasingly more complex symbolic expressions with the aid of control variable 

experimentation. Initially, we focus on searching for the best reduced model under controlled environments 

where the values of most variables are held constant. The correct reduced model can be quickly identified 

because of the reduced modeling space. Then we extend the reduced model to more complicated models 

by experimenting on new variables in an incremental way. We show this approach leads to faster learning. 

The development of AI-driven scientific discovery approaches was motivated by the real-world application 

of learning the physics model of nano-scale crystalline defects in materials4-5. Transmission Electron 

Microscope (TEM) cameras capture high resolution videos of these detects in the size of terabytes during 

in-situ radiation experiments, which justifies the need for fully automated analysis tools. In summary, our 

work provides a series of effective computational tools to accelerate scientific discovery. 
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