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Background

Discovering Ordinary Differential Equations (ODEs) governing the dynamics of a system is significant for our
better understanding of the world. Various techniques have been developed to distill ODEs from observations,
such as constraining hypothesis space with context-free grammar [1], constraint system identification with
human-computer communication [2], process model induction from data and knowledge about the observed
behavior [3], genetic learning of free-form natural laws [4], sparse regression to learn equations [5], physics-
informed learning from small data [6], learning of symmetry and separability [7]. These methods render the
dynamics interpretable as ODEs, addressing the following omnipresent pitfalls. Specifically, unlike synthetic
data, noise-free data are rarely available (noise). Additionally, frequent longitudinal time courses of a complete
set of variables without hidden variables are seldom observable (partial observability). Moreover, the acquired
equations should balance accuracy and complexity (overfitting). Uncovering underlying dynamics requires
addressing these issues, but simultaneously solving all of them remains challenging. To solve them effectively,
we should unify data and knowledge on symbolic structures instead of handling either data or knowledge.

Data-Driven and Knowledge-Based Integrated Approach

The above background has motivated us to implement an integrated framework of data-driven and
knowledge-based approaches for parsimonious equation discovery from noisy and partial ob-
servations. In the framework, ODEs are yielded from state variables of interest. First, once the user
inputs desired state variables, multivariate temporal data and knowledge represented by causal networks are
retrieved online from databases and domain-specific knowledge bases. A causal network can also be built
purely from data. For example, we have developed a methodology to combine network inference driven by
gene expression data and model validation based on multiple knowledge bases [8]. An undirected partial
correlation network was created from data, and causal directions were assigned according to knowledge.
Meanwhile, knowledge is also used for the abduction of latent variables in causal networks. In this case, new
variables and their associated temporal data and knowledge are fetched via an API and automatically added
to the model. Second, causal networks inferred from data or derived from knowledge bases result in building
candidate ODEs. Third, the ODEs are verified by investigating their predictive accuracy and stability and
simplified by parameter pruning with sensitivity indices. For instance, we have constructed different ODEs
of viral dynamics by querying the state variables, collecting the viral load time series and state transition
diagrams, with each transition corroborated by primary sources, and verifying the ODEs with sensitivity and
stability analyses [9]. While iteratively expanding and reducing the model, the identified ODEs are evaluated
by model selection criteria to avoid overfitting. Finally, the ODEs are obtained with a causal network by
integrating data and knowledge.

Parsimonious Equation Learning with Causality

Following our previous studies that provided knowledge-based causal directions for data-driven undirected
networks, our current efforts are dedicated to learning causal network topology from temporal data
based on Generative Adversarial Networks (GANs) for robustness to adversarial noise and
incorporating it into equation discovery for less model complexity. Predicting all edge weights of
a fully-connected bipartite graph whose nodes are time series of endogenous and higher-order candidate



variables is necessary to select amenable variables and function bases for dynamics and to reduce model
complexity and computational cost. Existing equation discovery techniques [4–7] have not explicitly
discovered causality. We now conjecture that observational causal discovery can limit the search space in
equation discovery and prevent models from overfitting due to those terms that are irrelevant to the causal
model. In the proposed framework, GANs learn coefficient matrices of linear structural equations with
time delays to detect causality between time series. Subsequently, the coefficient matrix to be estimated in
equation discovery is sparsified by injecting this causal network into the hypothesis space as an inductive bias
and replacing the non-causal elements in the matrix with zeros. These procedures formulate the problem
as a continuous constrained problem with penalty term. Besides, GANs accelerate the mining of robust
patterns from noisy data using continuous algebraic computing. The above framework for data-driven and
knowledge-based learning of causal networks and ODEs is realized as Parsimonious Equation Learning
with Causality (PELC), which can be a novel attempt to open an avenue for linking causality and equation
discovery. In the symposium, we expect to report on PELC, its experimental results, and its future.
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