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Data-driven modeling or physics discovery process has a notorious appetite for "good" quality data. This 

data, which could be harvested from high-fidelity models, experimental results, or field measurements, 

also does not come cheap, hindering data-driven modeling's applicability to realistic engineering 

applications. To mitigate this shortcoming, we propose a progressive physics discovery framework to 

lessen the data craving and empower the practicality of data-driven modeling, creating a large-scale 

model with a minimum turnaround.  

We adapt the idea of progressive learning from [1]. Our framework approach is to progressively 

and selectively transfer knowledge from previously trained models through gates, which enhance the flow 

of information if it is valuable and filtered out any not-valuable pieces of information. This is analogous 

to how we, as humans, learn from our teachers, where we can pick and choose what we want to learn and 

neglect information we deem unnecessary. Additionally, we usually learn fundamental courses before 

progressing to more advanced ones (i.e., Calculus I and then II). Through a series of test cases with 

known physics problems, we demonstrate that retaining information from the previously learned models 

and smartly utilizing a part of that information to improve the physics discovery and achieve a similar or 

even better accuracy with only a fraction of data. For instance, our framework with four parents 

outperforms its no-parent counterpart, with training data nine times larger.  

We have shown a sample of our results in Fig. 1. Our framework can also be used to understand 

possible correlations among physics and topologies (i.e., we can do bootstrapping sets of parents and 

identify which combination results in an optimal accuracy gain), leading a better interpretable model. 

From Fig. 1, one can observe that there is not much difference in accuracy gain when we add the fourth 

parent, which implies that there is no correlation of underlying data structure between the fourth parent 

and the problem at hand. While this approach can be applied to any deep learning-based data-driven 

models, we illustrate its application and performance using the Barlow Twins reduced order model [2].  

To this end, as our framework focuses on physics learning from a data paradigm, it can be applied 

to any physical problems (e.g., fluid or solid mechanics) or sources of data (e.g., high-fidelity numerical 

simulations or field measurements). This behavior is preferable since the framework can accumulate its 

knowledge from various sources. 
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Figure 1 An example of our framework capability where we have shown that as we add more parents to 

the model, our model grows its performance significantly 

 


