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Introduction to Discovery Problem. The integration of behavioral phenomena into mecha-

nistic models of brain function is a fundamental staple of the behavioral and brain sciences. Yet,

researchers are accumulating increasing amounts of data without having the time or money to

integrate these data into scientific theories and/or to test the resulting theories in follow-up ex-

periments (Almaatouq et al., 2022; Oberauer & Lewandowsky, 2019). In other sciences—such as

physics, biology, and chemistry—these issues have been partially addressed by integrating artificial

intelligence and automation into scientific practice (e.g., King et al., 2009; Lindsay, Buchanan,

Feigenbaum, & Lederberg, 1993; Udrescu et al., 2020). Our own efforts along these lines have

focused on automating pieces of the empirical research process in psychology and neuroscience,

including the discovery of interpretable mechanistic models with differentiable architecture search

(Musslick, 2021) and the synthesis of counterbalanced experiment sequences (Musslick et al., 2022).

This talk will present a novel framework that relies on computational discovery and closed-loop

automation to identify interpretable models of human behavior and brain function. We will focus

on how we used this framework to compare different model discovery techniques across different

domains of human information processing. Specifically, we will highlight our adaptations of these

techniques and discuss their comparative performance in recovering twelve established psychological

and neuroscientific models of human information processing from synthetic data.

Formulation of Discovery Problem. Our framework, pieces of which are open-sourced as a pip

package1, consists of three integrated software components: (1) an autonomous theorist that con-

structs interpretable computational models linking experiment conditions to dependent measures;

(2) an autonomous experimentalist that designs novel experiments; and (3) an environment that

automates behavioral data collection via online experiments. This talk focuses on the evaluation

of three computational discovery algorithms—differentiable architecture search (Liu, Simonyan, &

Yang, 2018; Musslick, 2021) and two instances of numeric equation discovery (symbolic regression;

Guimerà et al., 2020; Jin, Fu, Kang, Guo, & Guo, 2019)—to recover twelve established models of

human information processing from synthetic data. To do so, we formalized recoverable models as

computation graphs that take experiment parameters as input (e.g., the brightness or duration of a

visual stimulus) and transform this input through a composition of functions to produce observable

dependent measures as output (e.g., the probability of detecting said stimulus).

Data and Knowledge Provided to the Discovery Algorithms. To implement our approach,

we generated synthetic data from twelve established models of human information processing, which

we treated as “ground truth”. Our objective was to recover these models from synthetic data using

a discovery algorithm. Recoverable models take as input one to six experimental factors (comprising

the experimental condition) relevant to the ground truth, characterizing psychological paradigms

1AutoRA, Documentation: https://autoresearch.github.io/autora/; GitHub: https://github.com/AutoResearch/autora.
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in psychophysics, value-based decision-making, and cognitive control. Model outputs corresponded

to dependent measures (e.g., subjective ratings of stimulus intensities or choice probabilities). The

discovery algorithms knew about the number of experimental factors and the range of the dependent

measure (either a real value or a probability). The space of candidate models included computation

graphs with a fixed set of operations, including all operations used in the ground truth models.

Outputs Produced by the Discovery Algorithms. The discovery algorithms yielded inter-

pretable equations in the form of computation graphs that link the independent variables (input

nodes of the graph) to a dependent variable (output node of the graph). Intermediate nodes of

the computation graphs correspond to latent variables resulting from operations applied to the

preceding nodes (e.g., addition or multiplication).

Evaluation of Discovery Algorithms. We evaluated the discovery algorithms based on their

ability to recover the ground-truth models from synthetic data. The discovery algorithms used dif-

ferent objective functions to identify candidate models, including mean-squared error, log-likelihood,

and minimum description length. Thus, we evaluated candidate models based on all three metrics

applied to a hold-out test set generated by the ground truth model. In addition, we compared

candidate models against two baseline models—(logistic) regression and a multi-layer perceptron.

Results and Interpretation. We find that Bayesian symbolic regression (Guimerà et al., 2020)

outperformed alternative discovery algorithms across a wide range of ground truth models, suggest-

ing that the method is well suited to recover interpretable models of human information processing.

Yet, for complex ground truths (e.g., prospect theory), the equations recovered by all algorithms

rarely resemble the ground truth model, highlighting the potential for constraining search algo-

rithms with common theoretical constructs (e.g., expected utility).
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