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Advances in technologies for multiplexed imaging and spatially resolved sequencing enable a
more complex look at the structure and function of tissues [1]. Such data enables a new venue for
basic scientific discovery and advancement of its clinical applications [2]. As initial approaches
to the analysis of spatially resolved omics mature [3], we improve our understanding of the data
and establish better relationships to prior knowledge. We now have the opportunity to construct
more complex models to acquire novel insights into structure, function, and the emergence of
structure-function relationships. These models can provide, on one hand, a better understanding
of biological relationships that explain organization and regulation [4]. On the other hand, they
can go beyond the scope of current histo(patho)logy for patient stratification and following of
disease progression [5].

The aforementioned technologies measure the abundance of a set of molecular entities (e.g.
number of gene transcripts or molecules of protein) per spatial unit. Because of the different
resolutions of the technologies, each spatial unit has physical coordinates that correspond to
either the location of a specific molecule, the center of a cell, or the center of a larger spot
covering a number of cells. Typically, the spatial resolution of a unit is traded-off with the
number of captured distinct entities.

Our goal is to capture relationships that are consistent across studied samples while taking
into account spatial organization. To this end we proposed a multiview learning approach,
capturing flexibly and explicitly different aspects of the data [4]. First, an intrinsic view is
comprised of features capturing the biological context of interest per spatial unit. Subsequent
views capture different spatial or functional aspects of the data. For example, a spatial-context-
specific view can summarize measurements coming from the immediate neighborhood of the
spatial unit, or capture the broader spatial context by summarizing measurements in a fixed
radius around a spatial unit. View-specific models are then trained using intrinsic features as
targets. Finally, a meta-model fuses the predictions from the view-specific models.

In this frame, to explore the spatial organization of the tissue, prior biological knowledge in
the form of markers or atlases can be used to assign or deconvolve the cell-type composition of a
spatial unit as an intrinsic representation [6]. The spatial views then capture the cell composition
at different radiuses around the spatial unit. The models, in turn, capture persistent patterns of
cell-type composition in different spatial contexts. Similarly, knowledge [7, 8] about functionally-
related genes (genesets) can be used to estimate activities of processes such as signaling pathways,
allowing to model pathway crosstalks. To capture intercellular communication more explicitly,
each spatial unit can be represented by a subset of genes coding for receptors, whose expressions
can then be related to the expression of ligands from different spatial or cell-type contexts
[9]. The ligand-receptor relationships captured by the model provide insight into the potential
channels of communication.

The primary use of the models is not in a predictive setting, but to generate hypotheses about
the relationships in the data. Therefore, the output consists of the contribution of each view
to the meta-model and the estimated relevance of the predictor-target relationships within the
view-specific models. Ground truth about the existing relationships in the data is not complete
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or not available. Therefore, we estimate the predictive performance (e.g. variance explained) of
the constructed models as a proxy for the relevance of the information captured by the models.
Additionally, a limited set of relationships from prior knowledge can be used as support for the
correctness of the output relationships, while the remaining candidates define a set of hypotheses
for further experimental validation.

The view- and target-specific models and their interpretability are central to the framework,
as they provide insight into the underlying biology of the studied system. This framework lends
itself readily to symbolic approaches to explore different, more explicit forms of relationships
in the data informed by prior knowledge. The generated hypotheses can be also used to
constrain the design of smaller experimental panels for patient stratification or the generation
of measurements needed to uncover more direct mechanistic relationships. Generalizing across
multiple experimental data opens a venue for a systems approach to the discovery of higher-order
relationships underlying emergent molecular programs and functional tissue organization.
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