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A key application of Synthetic Biology is the engineering of organisms to produce useful com-
pounds. This typically requires heterologous biosynthetic pathways to be introduced into the pro-
duction chassis of choice. The product yield is dependent on both the efficiency of the heterolo-
gous system and the ability of the host metabolic network to produce the correct precursor in a
high enough amount. Engineering the host metabolic network to improve production is the basis
of metabolic engineering, but it remains a significant challenge due to the complexity of the bio-
logical system. Efficient computational approaches to both learn and navigate the biological design
space would greatly enhance our ability to predictably engineer biological systems.

Figure 1: Model-Comprehend framework

The Robot Scientist (King et al. 2004) demonstrated that abductive learning could be used to learn
metabolic networks faster and at less cost than random experiments. This demonstration was based
on a subset of only 17 genes in aromatic amino acid metabolism. Here we expand this approach
to include all 1515 genes included in the most complete E. coli genome-scale metabolic model



(GEM) (Monk et al. 2017). Through optimisation we demonstrate a 4000-fold improvement in
computational time, making whole-genome hypothesis generation and testing machine accessible.
We propose a novel bio-synthetic designer framework called Model-Comprehend which is em-
powered by Abductive Logical Reasoning and Active Learning together with CRISPRi technology
to efficiently test theoretical predictions by experiment (Figure 1).
Gene repression is a common approach in metabolic engineering, which can force metabolite flux
towards the target product, increasing yield. Predicting the phenotypic effects of gene repression
is challenging due to complex interactions between genes, proteins, and reactions within cells.
Models that can accurately predict the phenotypic effects of multiple gene perturbations would
greatly accelerate the development of cell factories.
As one of the most extensively characterized bacteria, E. coli is the foundation of synthetic biology
research and a large number of genetic tools and models have been developed for it. The iML1515
GEM was developed with the objective of being able to predict metabolic phenotypes under differ-
ent conditions and with different genetic perturbations. However, even though iML1515 is incom-
plete with respect to core gene functions it has been demonstrated to contain errors which affect the
accuracy of predictions and the reliability of the derived knowledge. A key constraint is being able
to learn from experimental data and improve model accuracy based on experimental observation.
The size of the design space for exploration is challenging both from the computational as well as
experimental standpoint.
Our framework uses Abductive Logic Reasoning (Muggleton and Bryant 2000) with Active Learn-
ing (King et al. 2004) and by applying matrix encoding and parallelisation, we improve the compu-
tation time 4000-fold, making genome-scale metabolic learning a viable task. We demonstrate this
by deliberately removing key nodes from the iML1515 model and asking the Model-Comprehend
framework to rebuild it based on experimental observation. The utility of Active Learning is also
benchmarked against random and naı̈ve approaches. Future work aims to integrate this approach
with an experimental workflow that will use CRISPRi to knock down specific genes to experimen-
tally validate hypothesis generation. Importantly this framework will enable us to address multiple
gene-loci in combination, which are not addressable by current high throughput mutagenesis ap-
proaches.
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