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In this talk, we introduce the machine learning tools, Symplectic Networks for learning many-body 

Hamiltonian systems from data [1]. Our primary goal is to develop data-driven models that can accurately 

predict the next states of such systems given their current states while preserving their symmetries. To 

achieve this, we embed symplecticity into fully connected neural networks and graph neural networks, 

which allows us to incorporate intrinsic symmetries of such systems directly into the models.  

 

In recent years, various neural network-based models have been proposed to identify Hamiltonian 

systems from data [2, 3, 4]. These models have been utilized in a wide range of applications, including 

image prediction [3], generative modeling [5], and continuous control [6]. The construction of these 

learning models primarily relies on the structure of standard numerical time-stepping methods. A 

noteworthy model specific to Hamiltonian systems is the Hamiltonian neural network (HNN) proposed in 

[3]. Unlike traditional approaches that approximate the total vector field, HNNs leverage a standard 

neural network to approximate the Hamiltonian. In this framework, the input consists of both the phase 

points and their derivatives. If the available data only consists of time-dependent discrete phase points, a 

numerical integrator must be applied to construct the loss. In comparison, symplectic networks enable the 

use of phase points directly as data without any discretization procedure. 

 

In computational terms, we would like to build a parameterized family of functions 𝜙, such that 𝑥(𝑡𝑖) ≈

𝜙(𝑥(𝑡𝑖 − 𝑑𝑡)) and satisfies properties including conservation of energy, volume preservation in the phase 

space and permutation equivariance. The first two properties can be guaranteed by symplecticity, which 

inspires us to develop a model that is intrinsically symplectic while being able to approximate arbitrary 

symplectic maps (universal approximation). Inspired by fully connected neural networks which are 

composed of linear and activation functions, we propose symplectic networks which are composed of 

symplectic linear modules and symplectic activation modules. Both modules are easily parameterizable 

lower/upper triangular matrix-like maps. The permutation equivariance can be ensured by additional 

graph structure on these basic modules.  

 

As a specific example, we consider the motion of Lennard-Jones argon particles in the NVE ensemble. 

We first run molecular dynamics simulations to obtain a ground truth trajectory {𝑝(𝑡𝑖), 𝑞(𝑡𝑖)}𝑖=1
𝑛 , where p 

and q corresponds to the momentums and positions of particles. Then we downsample the data every 𝑘 

steps to get {𝑝(𝑡𝑖+𝑘), 𝑞(𝑡𝑖+𝑘)}
𝑖=1

𝑛

𝑘 . The input to the neural network will be {𝑝(𝑡𝑖+𝑘), 𝑞(𝑡𝑖+𝑘)}
𝑖=1

𝑛

𝑘
−1

 while the 

output will be {𝑝(𝑡𝑖+𝑘), 𝑞(𝑡𝑖+𝑘)}
𝑖=2

𝑛

𝑘 . That is, we try to learn the time 𝑘Δ𝑡 map of the phase flow. This 

corresponds to a more realistic setting and can justify the use of neural network models as surrogate 

models in order to accelerate molecular dynamics simulation. 

 



 

 

We evaluate the performance of these models through theoretical analysis, experimentally using valid 

prediction time (VPT) metrics [7], and by comparing the deviation of the total energy from the ground 

truth in high-dimensional conservative systems. Our simulation results demonstrate that even small-sized 

symplectic networks can generalize well and handle long-term prediction, making them effective tools for 

learning complex dynamical systems. Furthermore, we demonstrate the applicability of symplectic 

networks to more realistic settings, such as modeling high-dimensional path-planning problems of 

multiple agents [8]. 

 

References  

* indicates equal contribution or alphabetical order.  

 

[1] Pengzhan Jin∗, Zhen Zhang∗, Aiqing Zhu, Yifa Tang and George Em Karniadakis. SympNets: 

Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. Neural Networks 

132. 166-179, 2020.  

 

[2] Bertalan, T., Dietrich, F., Mezi, I., Kevrekidis, I.G., 2019. On learning Hamil- tonian systems from 

data. Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 121107.  

 

[3] Greydanus, S., Dzamba, M., Yosinski, J., 2019. Hamiltonian neural networks, in: Advances in Neural 

Information Processing Systems, pp. 15353–15363.  

 

[4] Rezende, D.J., Racanie`re, S., Higgins, I., Toth, P., 2019. Equivariant hamilto- nian flows. arXiv 

preprint arXiv:1909.13739.  

 

[5] Toth, P., Rezende, D.J., Jaegle, A., Racanire, S., Botev, A., Higgins, I., 2020. Hamiltonian generative 

networks, in: International Conference on Learning Representations.  

 

[6] Zhong, Y.D., Dey, B., Chakraborty, A., 2020. Symplectic ODE-Net: Learning Hamiltonian dynamics 

with control, in: International Conference on Learn- ing Representations.  

 

[7] Vlachas, P., Pathak, J., Hunt, B., Sapsis, T., Girvan, M., Ott, E., Koumoutsakos, P., 2020. 

Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of 

complex spatiotemporal dynamics. Neural Networks 126, 191 – 217.  

 

[8] Tingwei Meng∗, Zhen Zhang∗, Jerome Darbon and George Em Karniadakis. SympOCnet: Solving 

optimal control problems with applications to high-dimensional multi-agent path planning problem. 

SIAM Journal on Scientific Computing, 44(6), 2022.  

 


