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Equivariance has always been an important inductive bias in deep learning. Symmetry-aware equivariant
networks have led to significant improvement in generalization, sample efficiency and scientific validity
(1; 2; 3; 4). Interest has surged in both theoretical analysis and practical techniques for building general group
equivariant neural networks (5; 6; 7; 8).

However, a key limitation of equivariant neural networks is that they require explicit knowledge of the
task symmetry before a model can be constructed. In practice, it is sometimes difficult to identify the
true symmetries of the task, and constraining the model by the exact mathematical symmetry might not be
optimal in real-world datasets (9). These challenges call for approaches that enable deep learning methods to
automatically discover the underlying symmetry of the tasks.

Neural networks that discover unknown symmetry may play the role of AI scientists, not only by making
data-driven predictions, but also by describing physical systems through their symmetries and generating
new scientific insights through the close relationship between symmetry, conservation laws and underlying
governing equations. Most existing works in symmetry discovery can only address a small fraction of
symmetry types, such as finite groups (10), subsets of a given group (11) or individual group elements
(12). L-conv (13) can discover continuous symmetries without discretizing the groups, but is limited in
computational efficiency. A more general framework is needed for discovering various real-world symmetries.

In our work (14), we propose a novel framework, LieGAN, to automatically discover equivariances from a
dataset using a paradigm akin to generative adversarial training. Our method trains a symmetry generator
that transforms the training data and outputs a similar distribution to the original dataset, which suggests
equivariance or invariance to the learned tranformations.

Making use of the theory of Lie groups and Lie algebras, LieGAN is able to discover continuous symmetries as
matrix groups, such as rotation group SO(n) and restricted Lorentz group SO(1, 3)+ in trajectory prediction
and top quark tagging tasks. Moreover, through different parameterization strategies, it can also deal with
other types of symmetries, such as discrete group transformation, as well as the subset of a group. LieGAN
displays symmetry as a matrix representation of the Lie algebra basis. With proper regularization on the
symmetry generator, it can decouple high-dimensional group structure to an interpretable, approximately
orthogonal basis.

We also develop pipelines for utilizing the discovered symmetry in downstream prediction tasks through
equivariant model and data augmentation. Specifically, we propose an arbitrary Lie group equivariant graph
neural network, LieGNN, which incorporates symmetries learned by LieGAN by introducing group invariant
metric tensors. We show that the discovered symmetry can be readily used as an inductive bias to improve
accuracy and generalization in prediction experiments.



References

[1] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep sets,”
Advances in neural information processing systems, vol. 30, 2017.

[2] M. Weiler and G. Cesa, “General e (2)-equivariant steerable cnns,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[3] T. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling, “Gauge equivariant convolutional networks and
the icosahedral cnn,” in International conference on Machine learning. PMLR, 2019, pp. 1321–1330.

[4] R. Wang, R. Walters, and R. Yu, “Incorporating symmetry into deep dynamics models for improved
generalization,” in International Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=wta_8Hx2KD

[5] R. Kondor and S. Trivedi, “On the generalization of equivariance and convolution in neural networks to
the action of compact groups,” in International Conference on Machine Learning. PMLR, 2018, pp.
2747–2755.

[6] T. S. Cohen, M. Geiger, and M. Weiler, “A general theory of equivariant cnns on homogeneous spaces,”
Advances in neural information processing systems, vol. 32, 2019.

[7] E. J. Bekkers, “B-spline cnns on lie groups,” arXiv preprint arXiv:1909.12057, 2019.

[8] M. Finzi, M. Welling, and A. G. Wilson, “A practical method for constructing equivariant multilayer
perceptrons for arbitrary matrix groups,” in International Conference on Machine Learning. PMLR,
2021, pp. 3318–3328.

[9] R. Wang, R. Walters, and R. Yu, “Approximately equivariant networks for imperfectly symmetric
dynamics,” arXiv preprint arXiv:2201.11969, 2022.

[10] A. Zhou, T. Knowles, and C. Finn, “Meta-learning symmetries by reparameterization,” arXiv preprint
arXiv:2007.02933, 2020.

[11] G. Benton, M. Finzi, P. Izmailov, and A. G. Wilson, “Learning invariances in neural networks from
training data,” Advances in neural information processing systems, vol. 33, pp. 17 605–17 616, 2020.

[12] K. Desai, B. Nachman, and J. Thaler, “Symmetrygan: Symmetry discovery with deep learning,” arXiv
preprint arXiv:2112.05722, 2021.

[13] N. Dehmamy, R. Walters, Y. Liu, D. Wang, and R. Yu, “Automatic symmetry discovery with lie algebra
convolutional network,” Advances in Neural Information Processing Systems, vol. 34, pp. 2503–2515,
2021.

[14] J. Yang, R. Walters, N. Dehmamy, and R. Yu, “Generative adversarial symmetry discovery,” arXiv
preprint arXiv:2302.00236, 2023.

2

https://openreview.net/forum?id=wta_8Hx2KD

