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Abstract

Collective behaviors (aka self organization), such as clustering, flocking, milling, swarming, and
synchronization, occur naturally in instantaneous magnetization, super conductivity, crystal forma-
tion, cell aggregation, social behaviors of insets (bees, ants, locusts) and animals, market behaviors,
traffic patterns, and more (see [1] and the 2022 AMS Josiah Willard Gibbs Lecture on Collective Dy-
namics1). It is a challenging task to understand such behaviors from the mathematical point of view.
We offer a series of statistical/machine learning methods to explain collective behaviors from observa-
tion data.

Consider a simple first-order system of N agents2, where each agent is assigned a time-dependent state
vector xi(t) ∈ Rd (xi can represent position, velocity, phase, emotion, health status, etc.), the temporal
change of xi(t) is trying to minimize a special system energy which has symmetries and other desired
properties (shown by observation and other experimental data), which is given as follows

ẋi(t) =
1

N

N∑
j=1,j ̸=i

ϕ(
∣∣xj(t)− xi(t)

∣∣)(xj(t)− xi(t)), i = 1, · · · , N.

Here ϕ : R+ → R is known as the interaction law governing how agent j would influence the change
of xi(t). Current research on collective dynamics focuses on deducing the desired behavior (clustering,
flocking, etc.) from a known class of interaction functions. However, when the trajectory data, i.e.
{xi(t), ẋi(t)}Ni=1 for t ∈ [0, T ], is given with all the necessary information except ϕ, can we learn the
interaction law, ϕ, from this set of data?

Concatenating the xi into one big vector, i.e. letting

Xt =


...

xi(t)
...

 ∈ RD and fϕ(xt) =


...

1
N

∑N
j=1,j ̸=i ϕ(

∣∣xj(t)− xi(t)
∣∣)(xj(t)− xi(t))

...

 , D = Nd ≫ 1,

then our learning problem could be re-written as a regression problem, i.e. finding fϕ such that

Ẋt = fϕ(Xt), given {Xt, Ẋt} for t ∈ [0, T ]. However the lack of data independence and the high
dimensionality of observation data prevent us from taking the normal regression route (or other ap-
proaches for learning dynamical systems, such as SINDy, Neural ODEs, PINN, etc). Therefore, we
design an error functional (which is similar to a loss function in training deep neural networks) which
exploits the special structure of the collective dynamics. In [2], a convergence theory of our data-driven
approach is established and the convergence is shown to be optimal and independent of the dimen-
sion of the observation data. We also consider second-order systems together with interaction for the
agent with its surrounding environments, similar to those used in model flocking, milling and swarm-
ing, we develop a learning theory in [6] and investigated the steady state behaviors of our estimated
dynamics (from first- and second-order observation data) in [3]. When the state of the ith lives on a

1Link: https://youtu.be/AenZz6Ooj2g
2Agents here can be referred to as particles, cells, robots, animals, etc.
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Riemannian manifold (those locally behaving like an Euclidean space, i.e. a 2D-sphere), we present
a convergent theory preserving the geometric property of the data in [4]. The assumption that the
interaction kernel ϕ has to be radially, i.e. depending on the pairwise distance variable ri,j =

∣∣xj −xi

∣∣,
is too restrictive and not realistic for biological systems. We relax such restriction and assume that
the interaction variables also become unknown, i.e. we have to learn Φ(xi,xj) instead of ϕ(ri,j) with
ri,j =

∣∣xj − xi

∣∣. Φ is a 2d-dimensional function (d ≫ 1) making the direct application of our orig-
inal learning approach computationally prohibitive. We combine a Multiplicatively Perturbed Least
Square to learn dimension-reduced representation of Φ with our original approach, then we are able to
learn Φ effectively. Details can be found in [5]. With our learning theories being theoretically proven
and supported on various applications using simulated observation data, we decide to test the theories
on real observation data, in particular, 500 years of daily position/velocity data of the Sun, 8 major
planets, and the Moon of the Earth from NASA JPL’s Horizons database (DS430/431). We overcome
the difficulties of missing acceleration data, long-time integration of a Hamiltonian system, large data
set; and we are able to produce a data-driven collective dynamics model with fewer assumptions than
Newton’s Universal Law of Gravitation and the capability of re-producing the perihelion pression rates
(a sensitive measure of the accuracy of the prediction of the planets’ trajectories) for Mars, Mercury
and the Moon close to the JPL’s data. Our model can also be used to estimate the masses of the ce-
lestial bodies (including Sun, the planets, etc.) upto 2-digit relative accuracy. Details can be found in
[7]. Learning theories on second-order general relativistic models and from observation data at steady
states are on going.

We are also actively developing newer collective dynamics models such as the emergence of line for-
mation in [8], concurrent emergence of several collective behaviors in [9]. A new model on random
movements of cell/bacteria is also being investigated.
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