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Abstract

Reinforcement learning (RL) has experienced a second wind in the past decade. While incredi-
bly successful in images and videos, these systems still operate within the realm of propositional
tasks ignoring the inherent structure that exists in the problem. Consequently, relational extensions
(RRL) have been developed for such structured problems that allow for effective generalization to
arbitrary number of objects. However, they inherently make strong assumptions about the problem
structure. We introduce a novel framework that combines RRL with object-centric representation
to handle both structured and unstructured data. We enhance learning by allowing the system to ac-
tively query the human expert for guidance by explicitly modeling the uncertainty over the policy.
Our empirical evaluation demonstrates the effectiveness and efficiency of our proposed approach.

1. Introduction

Reinforcement learning (RL) agents learn to make decisions by interacting with their environ-
ment (Sutton et al., 1998). Their ability to learn complex behavior without labeled training data
has attracted significant attention, which has been magnified by the success of deep learning-based
approaches to RL. These include game playing (Mnih, 2013; Silver et al., 2017; Vinyals et al., 2017),
enhancing Large Lanugage Models (LLMs) (Wang et al., 2025), robotics (Kober et al., 2013) and
autonomous driving (Zhao et al., 2024). While incredibly successful on specific tasks, deep learn-
ing based RL (DRL) suffers from a few limitations — the learned models are not easy to interpret,
they assume a flat, propositional feature space, and most importantly do not generalize well to an
arbitrary number of objects and unseen tasks.

These limitations are addressed by the relational reinforcement learning (RRL) framework,
which uses symbolic logic to represent states and actions. (Tadepalli et al., 2002; Das et al., 2020;
Kersting & Driessens, 2008; DZeroski et al., 1998). This rich representation not only allows agents
to generalize to an arbitrary number of unseen objects and situations, but it also enhances their
interpretability. These models can explore at multiple levels of abstraction, i.e., at the level of ob-
jects (say block) or at the level of relations (for ex., on(X,Y)), at the level of sub-populations (for ex.,
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squareBlock) or at the individual instance level (for ex., b7). Since they are built on symbolic manip-
ulation methods from class Al literature, the powerful exploration results in effective learning and
generalization. The resulting policies address the twin challenges of interpretability by employing
a rich symbolic representation, and generalization by employing universal and existential quanti-
fiers (Natarajan et al., 2011; Das et al., 2020; van Otterlo, 2012; Kersting et al., 2004; Kersting &
Driessens, 2008).

While extremely powerful from a representation perspective, the applications of these methods
were limited to structured domains. Specifically, they assume that the background knowledge, spe-
cific observations, language bias, and search bias are all provided before learning and are available
in symbolic form. This has greatly limited the applicability of these systems to compelling tasks
where the inputs are not necessarily structured. It is indeed challenging to learn from fully struc-
tured inputs — for instance, blocksworld has not yet been solved in its full generality. However,
constructing these structured information from fully unstructured data such as sequences of images
or videos can be time-consuming and cumbersome. However, faithful modeling of such problems
requires structured representation and learning from unstructured data.

We aim to address this problem of learning RRL agents without assuming structured domains
and fully pre-specified domain knowledge. Specifically, we aim to answer the following question:
can we learn symbolic, policies in both structured and unstructured domains in the presence of a
human with a fixed budget? To answer this question, we propose the RAEL (Relational Active Ad-
vice Elicitation) algorithm, which actively elicits advice from the human to learn symbolic policies
for acting in both structured and unstructured environments. At a high-level, RAEL works as fol-
lows: It uses a symbolic representation as input and for tasks that do not have structured information
(for instance, Atari games), uses an object-centric representation extractor method to create these
symbolic representations (Delfosse et al., 2023). Given this representation, the system employs Re-
lational Fitted-Q learning (RFQ) (Das et al., 2020) to learn the policy. While learning the policy, the
algorithm explicitly computes the uncertainty over the policy based on policy roll-out and identifies
the most uncertain states to query the human expert. To control the frequency of such interactions
and limit the burden on the expert, RAEL operates under a predefined advice budget, which con-
strains the total number of queries that can be made during training. Given the advice from the
human, the system trades-off between its learned policy and the human knowledge to identify the
best action in every state. Essentially, this advice is integrated as a soft constraint to the learning
process.

We make the following key contributions: (1) As far as we are aware, we present the first
work on actively querying the human expert for learning symbolic policies from both structured
and unstructured data. (2) We go beyond shaping functions and directly obtain policy constraints
from the user. (3) Our RAEL algorithm can learn from both unstructured and structured data in
the presence of a human expert. (4) Our empirical evaluations on both structured and unstructured
domains demonstrate the efficacy and efficiency of the proposed approach.

The rest of the paper is organized as follows — after introducing the necessary background on RL,
RRL and advice taking, we present our Relational Active Advice Elicitation (RAEL) framework.
We then provide empirical evidence of the algorithm by comparing against strong baselines. Next,
we present the related work before concluding the paper by outlining areas of future research.
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2. Background and Preliminaries

Reinforcement Learning (RL) (Sutton et al., 1998) provides a principled framework for se-
quential decision making under uncertainty by modeling it as a Markov Decision Process (MDP).
An MDP is formally defined as the 5—tuple: M =< S, A, P, R,y >, where S denotes the
set of all possible states of an environment, A denotes the set of actions an agent can perform
in that environment, P : S x A x & — [0,1] denotes the transition probability function, R :
S x A — R denotes the reward function and v € [0,1) is a discount factor that trades off im-
mediate versus future rewards. At each time step ¢, the agent observes a state s;, selects an ac-
tion a;, transitions into a new state s;y1 according to P(s;4+1|st, a¢) and receives a reward r;, =
R(s¢,ar). The goal is to learn a policy m(als), which specifies a probability distribution over
the actions given a state. The performance of the policy can be summarized by an action-value
function (a.k.a Q-function) Q(s,a) = Er [Y72, v R(s¢, ar)|so = s,a0 = a], which measures
the expected cumulative discounted reward achieved by starting from state s, taking action a and
thereafter following the policy . The optimal Q-function satisfies the Bellman optimality equa-
tion: Q*(s,a) = Eyop(s,a) [R(s,a) +ymaxy Q*(s',a’)]. While dynamic programming can
be used to solve this exactly in small and finite spaces, it becomes intractable when S or A is
large or continuous. Fitted Q-learning (Ernst et al., 2005) addresses this by approximating the
Q-function (@) using a class of regression models. Specifically, it collects a batch of transitions
D = {(si,a4,7i, s;)fil} under an exploration strategy, and at each iteration, computes the empir-
ical Bellman targets y; = 7r; + vy maxy @(5;, a'). A function class F (such as regression trees,
neural networks, etc) is then fit to approximate the Q-function by minimizing empirical error as
follows: Q € argminger > ,(f(si,ai) — yi)* + Q(f). where f(s;,a;) denotes a parameterized
approximation of the Q-function projected to the function class F and {2 denotes a regularizer that
penalizes complexity. Thus, by iterating between the Bellman operator and function projection,
Fitted Q-learning reduces the problem of approximating the optimal action-value function to an ef-
ficient supervised regression problem, and admits generalization and convergence guarantees under
standard assumptions (Ernst et al., 2005).

Relational RL (RRL). Many real-world problems are most naturally represented in terms of ob-
jects and relationships between them, rather than flat feature vectors. While deep RL methods such
as DQN (Mnih et al., 2015) or PPO (Schulman et al., 2017) provide strong function approxima-
tion in propositional settings, they are not designed to operate over relational state spaces without
significant feature engineering (e.g., relational graph embeddings). Moreover, their gradient-based
optimization often results in sample inefficiency, requiring large amounts of data to reach compet-
itive performance, especially in structured/relational domains. RRL solves this issue by extending
RL to relational domains. It models these domains using Relational Markov Decision Process
(RMDP) (Fern et al., 2003), which extends the classic MDP framework by representing states, ac-
tions, and transitions using first-order logic. Formally, the environment is characterized by a set of
objects classes (O), a set of predicate symbols (7P) (for relations and attributes), and a set of action
types (A). A state s is specified by the set of ground, instantiated predicates (atoms) that are true for
the current objects, for example, on (blockl, block?2). The set of available ground actions in a
state is obtained by instantiating the action types for the current objects. The transition probabilities

145



F. GOLIVAND ET AL.

and reward function are defined as in the standard MDP, but now operate over relationally described
states and actions. A key challenge in RMDPs is that the number of ground states and actions
grows combinatorially with the number of objects, and hence learning policies and value functions
in tabular form is infeasible. RRL algorithms address this by learning a relational policy (7 (s, a)),
which is a mapping that assigns a probability to each ground action a in state s, but is specified in a
compact lifted (parameterized) form using logical rules over object types and relations, rather than
enumerating all possible cases. RFQ (Das et al., 2020), for example, computes the Bellman targets
over batches of transitions described in terms of symbolic states and actions, and uses relational rule
learners such as relational regression trees or their gradient-boosted ensemble versions to project the
Q-values onto the space of relational functions. We will focus on RFQ with gradient-boosted rela-
tional regression trees as the function class (F) in this work, as it offers a stable, interpretable and
sample-efficient way to accurately approximate the Q-function, while allowing easy integration of
human feedback.

Object Centric Representations. Typical RL policy functions are implemented using deep neural
networks—such as convolutional neural networks—that take raw visual inputs (pixels) and output
action distributions. However, studies have shown that these pixel-based policy functions are often
misaligned: they may develop biases and base decisions on misleading features, such as focus-
ing on background elements rather than relevant foreground objects, thereby contradicting human
intuitions about the environment (Delfosse et al., 2024c, 2025). To address this limitation, object-
centric representations have emerged as a key component in interpretable RL (Yoon et al., 2023;
Haramati et al., 2024). These methods represent the input space in terms of objects (e.g., positions,
orientations) and their relations (e.g., left of, right of), rather than undifferentiated pixels. Thus, in
this work, we employ them as a way to learn transparent policies that can utilize both symbolic and
sub-symbolic information within relational gradient-boosted fitted Q-learning.

Human Advice in RL. In complex real-world environments, state and action spaces are often
high-dimensional, and rewards from the environment can be sparse. Under such conditions, RL al-
gorithms may suffer from slow convergence and poor sample efficiency, since discovering reward-
ing behaviors often requires exploring a large number of unproductive or even unsafe regions of the
state space (Dulac-Arnold et al., 2021). Human guidance has emerged as a compelling solution to
address this problem, as providing expert advice can ease the optimization problem by reducing the
search space, accelerating convergence, and steering agents away from undesirable behaviours (Ret-
zlaff et al., 2024). While several works on reward-shaping and advice-taking (Ng et al., 1999, 2000;
Kunapuli et al., 2013; Maclin & Shavlik, 1996) have shown that incorporating additional feedback
can improve sample efficiency, they typically require heuristics or dense up-front input/advice from
the expert, which can be expensive and infeasible in practice. To address this, active advice seek-
ing (Odom & Natarajan, 2015) has been proposed, where agents automatically identify situations of
high uncertainty such as unfamiliar or ambiguous states, based on measures such as policy entropy,
and selectively request targeted guidance from a human expert. By querying for advice only when
needed, such systems can improve the policy quality using far fewer interactions with the environ-
ment, all the while staying within the budget at hand, making human-in-the-loop RL practical and
scalable to large real world applications.
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Figure 1: Overview of the proposed Relational Active Advice Elicitation (RAEL) framework. The
environment provides either raw or symbolic states; an object-centric extraction module lifts raw
images to symbolic representations. The agent’s behavior is determined by a probabilistic policy
reuse strategy, combining relational fitted Q-learning with e-greedy exploration and active advice
from an expert. After each training cycle, policy rollouts are used to compute statewise uncertainty.
The most uncertain states are presented to the expert for advice, which is stored as abstractions for
reuse. Advice-aware Q-value updates incorporate this guidance to improve learning efficiency.

In this work, we build on the above foundations to introduce a unified framework that combines
relational representations, fitted-Q learning, object-centric representations and active advice seeking
to enable efficient, interpretable, and human-aligned RL in complex domains.

3. Relational Active Advice Elicitation in Reinforcement Learning (RAEL)

The goal of Relational Active advice Elicitation in reinforcement Learning (RAEL) is to learn a pol-
icy that automatically detects problematic regions of the state space, actively solicits expert guid-
ance on those areas, and—by accumulating advice—achieves greater sample efficiency, stability,
and confidence in its decisions. With RAEL, we aim to solve the following problem:

Given: An environment that yields either raw observations (e.g., images) or symbolic state
descriptions, a set of (parameterized) action types A, and a finite budget B of advice from an
expert.

Task: Learn a policy 7 that maximizes the expected return while (a) generalizing across varying
number and configurations of objects, (b) is sample-efficient and stable, and (c) uses human
advice only when needed.

To this end, we train an agent to act in a relational (first-order) state space, which represents each
state primarily by objects’ attributes and relations. If the environment provides raw observations
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(e.g., pixels), we map sub-symbolic inputs to symbolic states via f : z — z, x € RWV*H*XC 5 ¢
Z,where W and H denote the width and height of the input image, C' the number of channels, and z
encodes objects and lifted predicates over their attributes and relations. This non-injective mapping
can severely hinder learning, particularly when the policy must distinguish between perceptually
different but symbolically identical states.

Example 1. In Atari game Kangaroo, consider a simplified environment, where there is no
enemy (no thrown coconut or monkeys) and the goal is for the mother kangaroo to reach its baby
at the top level through some ladders, as shown in Figure 1 (top-left). One intuitive way to sym-
bolically represent this environment is with three predicates, onLadder, leftOfLadder, and
rightOfLadder. In this setting, if the player is at the left of a ladder and n steps away from the
ladder, there are at least 6™ visual configurations that are mapped to the same leftOfLadder
predicate, given that the player can face right or left, sat-down or jumped-up in a captured image.

To address these challenges, we incorporate human knowledge in the form of expert advice as a
central component. The form of our advice is action preferences—a set of preferred actions—and,
optionally, a relational abstraction that specifies where the advice applies.

Definition 1. Let z € Z be a symbolic state described by a conjunction of predicates p1, . . ., pn. An
advice is a pair a = (¢, A*Y), p € A, A*V C A,. where ¢ is an (optional) abstraction that maps
the original predicates {p1, . ..,pn} to a (possibly equivalent) conjunction of lifted predicates, and
A s the set of preferred actions in the state. The abstraction o specifies the critical relational
conditions under which the advice is valid, while the set A*Y encodes the human’s recommended
action choices. If no abstraction is provided, @ defaults to the conjunction of all predicates describ-
ing z. We write z |= p when the state z satisfies the abstraction .

Example 2. Consider the simplified (no threats) Atari game Seaquest. Suppose the agent en-
counters a problematic state z* described by the following set of predicates:

visibleDiver (obj27, sl), visibleDiver (obj26, sl),
deeperThanDiver (objl, obj26, sl), deeperThanDiver (objl, obj27, sl),
oxygenLow (0bj36, sl), facingLeft (objl, sl),

rightOfDiver (objl, obj27, sl), rightOfDiver (objl, obj26, sl).

In this situation, the expert advises the agent to take the action move_ up in order to replenish
oxygen. Formally, the advice is given as: o = (p, A*Y), ¢ = {oxygenLow()}, AV =
{move_up}. Here, the abstraction ¢ retains only the predicate oxygenLow, ignoring the pres-
ence of divers, orientation, or spatial relations. Thus, the advice generalizes: whenever the agent
observes that oxygen is low—regardless of other predicates in the state—it should prioritize moving
up to refill oxygen.

Note that while the example lists a single action in the advice, the framework accepts a set of
actions (preferred) and treats the rest of the actions as non-preferred actions according to the advice.
Figure 1 illustrates the overall workflow of our proposed framework, which applies Relational
Fitted Q-learning (RFQ) (Das et al. (2020)) directly to both structured domains and raw image
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environments using symbolic representations extracted with object-centric tools such as OC-Atari
(Delfosse et al. (2024b)). The key idea is to transform pixel-based observations into lifted symbolic
representations that capture object attributes and relations. We then train an RFQ model Q) : Z x
A — R, Q(z,a), on this symbolic representation to induce a relational policy.

A second central feature of this framework is the process of active advice elicitation. The agent
continuously monitors its own learning progress and detects problematic states—regions of the state
space where the policy exhibits high uncertainty. We calculate the uncertainty based on the policy
entropy, which measures how uncertain or stochastic a policy is across its action choices:

H(s) = - w(als)log m(als), ()
acA
where 7(als) is the probability of selecting action a in state s, and .4 denotes the action set.

The overall working of our RAEL framework is summarized in Algorithm 1. After each itera-
tion, the agent performs an evaluation roll-out and collects visited symbolic states Deya = {z}.
It then selects the most uncertain state z* € argmax.ep,, U(z), and given an advice budget
B € N, it seeks advice for that state from the expert, and stores the advice set in a memory set
Adv C A x A (Definition 1). During training, action selection at z; follows the below Probabilistic
Policy Reuse(PPR) scheme (Ferndndez & Veloso, 2006), to ensure that the expert advice is applied
selectively, while preserving exploration and exploitation:

Uniform(.A) if u < pe(t),
at ~ { a®v if 3(p,a®V) € Advs.t. 2, F g and u < p(t), ()
arg maxgae 4 Q(z¢,a) otherwise,

where u ~ Uniform[0, 1], p(t) € [0, 1] is the advice-taking probability which controls the degree
of expert influence, and p¢(t) is the exploration rate. Both p(¢) and p.(t) can decay with ¢. Using
PPR, we ensure that the advice acts as a soft constraint on the learner’s policy rather than a hard
instruction. Hence, if advice is noisy or suboptimal, the agent is not forced to follow it and can
adapt based on environmental feedback.

When an advised action (a.qv) is used in a state z; that satisfies the advice condition, we first
perform the standard Bellman optimality update

Q(Zt7 aadv) < (1 - a)Q(Zta aadv) + O‘y?dv (3)

where 329V = 73V + vy max, Q(2t41,a’) Va € A, and ri% is the reward received after taking the

advised action a®®" at time ¢. We then project the advised action’s value to ensure it dominates other
actions at z; by at least a small margin § > 0:

Q(Ztaat) if a; 7é Aady,

4
max (Q(zt, Qadv), MaXq£a,,, Q(2t,a) + 5) a; = Qadv, “4)

4t = Qadv(zt, a) = {
Thus, in short, Algorithm 1 alternates between (i) training episodes where the agent explores the
environment, executes actions, and stores transitions following the expert guidance (ii) fitted Q-
updates where relational regression trees are trained based on the training trajectory and (iii) evalu-
ation rollouts where policy entropy is monitored to identify the most uncertain states. If the advice
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Algorithm 1: Relational Active Advice Elicitation in Reinforcement Learning (RAEL)
Input : Object-centric map f; exploration probability p.(t);
advice taking probability p(t); monotone function 1);
advice budget B; training rollouts N ,in; evaluation rollouts Neya).
Output: Learned () € F and policy 7(z) = arg max, Q(z, a).
Initialize Q € F (to a constant), data buffer B «+— (), advice memory Adv < ) , Advice
Budget B;
for iter =1,2,... do
for ¢ = 1 to N, do
Reset env, observe x, set zg < f(x¢)
while episode not terminal do
Sample u ~ Uniform|0, 1]
if u < pc(t) then
| a; ~ Uniform(A);
else if 3(p,a*V) € Adv: 2z F ¢ and u < p(t) then
| ap < a?v;
else
| a; < argmax, Q(2, a);
| Execute a;; Compute g; using Equations (3) and (4); Store (2, at, g;) in B;

// Relational Fitted Q-update with advice boosting
Learned gradient boosted relational regression trees to fit I3 and obtain the new ()
function;
// Compute uncertainty and query expert
& < Rollout(Q, Neyar)
Compute H(z) = =), m(a| z)logn(a | z) forall z € £
2* « argmax,ecg H(2)
if B > 0 then
Query expert on z* to get (¢, a®V)
Insert (¢, a®¥) into Adv
B+~ B-1

budget has not been exhausted, the most uncertain state is presented to the expert, who provides a set
of preferred actions optionally paired with a lifted abstraction. The advice is stored in the memory
set Adv and influences subsequent action selection according to Eq.2. The boosted Q-values (Eq.4)
ensures that expert-advised actions dominate in the corresponding states.

4. Experiments and Results

To evaluate the effectiveness of our proposed method, we designed a set of experiments addressing
the following core questions:
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* Q1: Can RAEL achieve sample-efficient learning? We hypothesize that our method of-
fers improved sample efficiency by directly learning symbolic policies. Also, compared to
approaches that use neural guidance, we hypothesize that our method shows better policy
fidelity, especially when the base rules are imperfect or misaligned in neural-guided methods.

* Q2: Can active advice improve learning outcomes? We aim to assess whether enabling the
agent to selectively query for guidance in uncertain states leads to better policies.

* Q3: Is adding abstraction guidance more informative than simple action preferences?
We compare two types of expert interventions: (i) action preference advice, where the expert
suggests the optimal action(s), and (ii) abstraction-based advice, where the expert addition-
ally highlights which predicates of the state influenced their decision.

Environments. We evaluated our approach across both subsymbolic and symbolic domains. For
the former, we conducted experiments on two Atari games—Kangaroo and Seaquest—using the
Atari Learning Environment benchmark (Bellemare et al., 2013), which is widely adopted in rein-
forcement learning research, particularly in relational reasoning tasks. We use OC-Atari (Delfosse
et al., 2024b) to extract the symbolic representation from raw pixels. To facilitate clearer analysis
and interpretation, we did the experiments in simplified environments. For this purpose, we have
used Hackatari (Delfosse et al., 2024a) to decrease the threats in the environment. For example, the
thrown coconuts in Kangaroo and missiles in Seaquest are eliminated. Although the method was
developed and evaluated within a simplified setup, its applicability to more complex environments
remains to be explored. Prior research suggests that relying on logical reasoning in high-risk or
time-critical situations is often impractical, as such situations require rapid decision-making. In
these cases, neural policies are preferred for their fast response, while logical reasoning can be re-
served for lower-risk states (Shindo et al., 2025). To examine the effectiveness of our active advice
mechanism in structured symbolic domains, we additionally evaluated on the Blocks World (Stack
task) (Slaney & Thiebaux, 2001). In this environment, blocks are arranged into towers, and the
agent’s goal is to construct a single tower by stacking all blocks. We defined a positive reward for
reaching the goal and a small negative reward for intermediate steps. In Atari environments, we used
a large negative reward for terminal failure states (e.g. being punched by a monkey in Kangaroo or
running out of oxygen in Seaquest). In our experiments, we set the advice budget to 3 for the sim-
pler Kangaroo domain and 5 for the more complex Seaquest and Blocks World domains. While we
treated the budget as a fixed hyperparameter in this work, quantifying this parameter systematically
is an interesting direction for future research.

Evaluation Metric. We used two metrics for our evaluation— cumulative rewards and policy fidelity.
Cumulative reward is computed by executing the agent with its learned policy over multiple eval-
uation episodes and averaging the total rewards across the trajectories. Policy fidelity is measured
by comparing the learned policy against a reference set of rules provided by an external oracle. In
our case, we treat the oracle as an expert source—such as a domain specialist or a large language
model—that specifies a set of essential rules believed to be near-optimal for the task. Specifically,
we used GPT-5' to generate these rules, capturing the behaviors it predicts would lead to high

1. https://platform.openai.com/docs/models/gpt-5
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Table 1: RAEL is sample efficient. Mean return after 300k training steps. RAEL outperforms
purely gradient-based methods, such as NeuralPPO, NUDGE, and BlendRL, which suffer from
sample inefficiency.

Environments NeuralPPO NUDGE BlendRL RAEL (w/o Abst.) RAEL

Kangaroo 0.0+0.0 0.0+0.0 0.0+0.0 51 55
Seaquest 0.0+0.0 20.2+18.55 0.0+0.0 40 110

performance. After training, the agent’s learned rules are evaluated against this oracle rule set to
determine the extent to which the learned policy satisfies the prescribed near-optimal conditions.
Implementation Details. All Experiments were run on a server with an AMD EPYC 7343 CPU,
256 GB RAM, and an NVIDIA L4 GPU (24 GB). The algorithms were implemented in Python
3.10, with relational components using the RFQ codebase (Das et al., 2020) and Atari environments
via the OpenAl Gym interface, and OC-Atari object centric representation module.

Q1: Can RAEL achieve sample-efficient learning?

To evaluate sample efficiency, we compare RAEL against established neuro-symbolic reinforce-
ment learning baselines under limited training steps. Specifically, we consider NUDGE (Delfosse
et al., 2023) and BlendRL (Shindo et al., 2025). NUDGE is a symbolic policy learning frame-
work that employs differentiable logic programs as policy functions. BlendRL extends NUDGE by
incorporating neural networks, enabling hybrid policy computations and achieving state-of-the-art
performance on the Kangaroo and Seaquest environments as a relational RL baseline. We addi-
tionally compare RAEL against a purely neural baseline: a PPO agent (Neural PPO) that uses a
convolutional neural network as its policy function (Schulman et al., 2017). For this, we adopt a
publicly available implementation of PPO (Huang et al., 2022) with their default model architecture
and hyperparameters.

Table 1 presents the mean cumulative rewards after 300k training steps. Overall, RAEL achieved
the highest cumulative rewards across both environments. The logic-based baseline, NUDGE, ob-
tained moderate rewards in Seaquest but failed in Kangaroo, highlighting its limitations in handling
complex, dynamic scenarios (e.g., nearby enemies) due to the lack of direct structure learning. Base-
lines with a major neural component, Neural PPO and BlendRL, also failed in both environments,
illustrating the sample inefficiency of policies that rely primarily on neural networks, which typi-
cally require millions of training steps to converge. In contrast, RAEL exploited sample-efficient
structure learning to attain superior performance. Moreover, when augmented with external advice,
RAEL improved further, demonstrating not only efficiency but also the capacity to integrate external
guidance, which are essential aspects of human intelligence.

Q2: Can active advice improve learning outcomes?

To measure the effectiveness of active advice, we first hypothesized that incorporating expert ad-
vice even as a prior rule would aid learning. However, our experiments revealed a counterintuitive
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outcome: introducing prior advice in a simple, threat-free environment could actually undermine
performance. For instance, in the basic Kangaroo setup—without extensive reward shaping—the
agent was able to learn near-optimal policies on its own. However, when we introduced a seem-
ingly benign piece of advice (e.g., ‘whenever you are on a ladder, go up”), the learning process
deteriorated significantly. The problem is when we manipulated the Q-values to artificially favor
the go_up action while on the ladder, although expecting it to accelerate convergence, it led to un-
desirable behavior: the agent began intentionally descending the ladder only to climb back up and
repeatedly exploit the inflated Q-value, thereby getting stuck in a loop—a classic pitfall of poorly
designed reward shaping. This illustrates that in environments where the dynamics are simple, it is
often better to avoid advice altogether than to risk introducing imperfect or misleading guidance.

Table 2 shows that imperfect prior advice can harm performance, even if combined with reward
shaping. In the no-threat setting, Reward Shaping (RS), Prior Advice (PA), and no intervention
all achieved perfect fidelity (3 out of 3 rules). However, when RS was combined with PA, fidelity
dropped to 2 out of 3, indicating that even in a simple environment, incorrect or overly general prior
rules can conflict with the shaped reward and hinder optimal policy learning. In the environment
with the “Monkey” threat, fidelity remained low (1 out of 4) for all setups, suggesting that neither
fixed prior advice nor reward shaping alone is sufficient in more challenging conditions. These
observations motivate the use of adaptive, on-demand advice, which can provide targeted guidance
when needed.

Our results on Blocks World environment (Stack task), shows that actively interacting with
expert on problematic regions improves learning (Figure 2). This proves our hypothesis and shows
that our method not only generalizes effectively to unstructured, sub-symbolic environments but
also accelerates convergence in structured relational domains.
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Figure 2: Active advice improves performance in Blocks World. Cumulative reward as a function
of training iteration for the stacking task. The orange curve shows mean performance with active
advice (entropy-based querying), while the blue curve shows training without advice. Active advice
consistently yields higher rewards and more stable learning compared to the advice-free baseline.

Q3: Is adding abstraction guidance more informative than simple action preferences?

To measure the effectiveness of abstraction advice, we evaluated three configurations.
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Table 2: Policy fidelity for passive (RS, PA, RS+PA, No Advice) and active advice (with/without

abstraction) on Kangaroo (threat / no threat) and Seaquest. “—" denotes not evaluated.
Kangaroo Seaquest
Group Setting No threat with Monkey Simplified
RS (Reward Shaping) 100% 25% -
Passi PA (Prior Advice) 100% 25% -
ASIVE RS+PA 67% 25% -
No Advice 100% 25% 21%
Active Active w/o abstraction - 75% 44%
Active w abstraction - 100% 75%

* No Adyvice (Baseline) — The agent learns without any expert input. * Active Advice w/o
Abstraction — The expert provides only the preferred action(s) when requested.

* Active Advice w/ Abstraction — The expert provides both the preferred action(s) and the
relevant state predicates that justify it.

In the abstraction-guided setup, the agent requests advice in states of high uncertainty. Upon
receiving the request, the expert evaluates the current state in terms of symbolic predicates and
identifies which predicates directly support the advised action.

Figure 3 shows the average cumulative return in Kangaroo and Seaquest. Both active advice
models outperform the baseline, confirming that expert guidance accelerates learning. Moreover,
incorporating abstractions into advice leads to faster convergence compared to action-only advice,
as the agent can generalize the advice across states more effectively when key predicates are spec-
ified. For example, in the Seaquest environment, when the predicate oxygenLow is true, the expert
advises the agent to move up to refill oxygen. By abstracting over this predicate, the agent learns
that the action remains a priority regardless of other objects present in the state, which reduces the
number of queries needed for similar situations.

In addition to performance, we evaluated the policy fidelity of the abstraction-guided model. As
shown in Table 2, the abstraction-based advice consistently achieves the highest fidelity, followed
by action-only advice and then the no-advice baseline. This supports our hypothesis that explicitly
highlighting relevant predicates allows the agent to better internalize and apply expert knowledge.

5. Related Work

Relational and Neuro-Symbolic RL. RRL (Dzeroski et al., 2001; Kersting et al., 2004; Kersting
& Driessens, 2008; Lang et al., 2012; Hazra & Raedt, 2023) aims to scale RL to environments best
described by objects and relations using logical or lifted representations and probabilistic reasoning.
Recent neuro-symbolic methods seek to combine the interpretability of symbolic policies with the
expressiveness of deep neural networks, enabling structure aware policies to be learned from raw
inputs or partially observed states (Jiang & Luo, 2019; Delfosse et al., 2023; Hazra & Raedt, 2023;
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Figure 3: Impact of abstraction-guided advice in Atari. Cumulative reward over training itera-
tions for (a) Kangaroo and (b) Seaquest. The blue curve shows RAEL with active advice including
relational abstraction, the orange curve is active advice with only action preferences, and the green
curve is no advice. Across both domains, advice with abstraction yields faster and higher returns,
demonstrating improved sample efficiency and policy quality.

Smet et al., 2025; Shindo et al., 2025). However, most existing approaches rely heavily on gradient-
based optimization for policy learning, which makes them sample-inefficient—requiring a large
number of training steps to obtain satisfactory policies. More importantly, these methods are not
explicitly designed to align with human preferences or incorporate human guidance. In contrast,
RFQ learning (Das et al., 2020), which we use in this work, addresses the above limitations by
performing direct structure learning and reducing sample complexity while enabling human-aligned
policy induction.

Human Allied RL and Advice Integration. A longstanding goal in RL is to leverage human
expertise to improve sample efficiency, safety, and alignment with user preferences, particularly
in environments with sparse rewards or large state spaces (Retzlaff et al., 2024). Early work on
program-guided Q-learning and advice-taking RL (Andre & Russell, 2001; Maclin & Shavlik, 1996)
showed that incorporating high-level, imperative guidance—whether as programmed macro-actions
(Andre & Russell, 2001) or as human-provided rules injected into a Q-learner (Maclin & Shav-
lik, 1996)—can accelerate learning and improve policy quality, providing temporal (sequential)
and contextual structure beyond single state—action labels. Building on this, several principled ap-
proaches have emerged for incorporating advice via reward shaping (Wiewiora et al., 2003), logic
constraints (Baert et al., 2023) as well as uncertain opinions (Dagenais & David, 2024). In rela-
tional domains, advice can be especially impactful, as shown by Driessens & Dzersoski (2004),
who incorporated advice into RRL to make Q Learning feasible in structured environments with
sparse rewards. Korupolu et al. (2012) introduced a relational approach where agents interpret hu-
man instructions as either action preferences or state preferences . Bignold et al. (2023) proposed a
persistent rule-based interactive RL method using Ripple-Down Rules and probabilistic policy reuse
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(Fernandez & Veloso, 2006), retaining advice across episodes to improve efficiency. More recently,
Guo et al. (2023) proposed an Explainable Action Advising framework, where the expert provides
both the preferred action as well as an explanation that acts as an abstraction, enabling the agent
to reason. Compared to these approaches, RAEL focuses on action-preference advice at the state
level, optionally paired with symbolic abstractions that highlight relevant predicates. This choice
makes the integration simple and tractable within relational fitted Q-learning, while still enabling
generalization across states.

The mentioned previous methods rely on predefined static rules to improve the sample effi-
ciency. Actively seeking advice has previously been explored in the context of inverse RL (Odom
& Natarajan, 2015). However its utility in direct policy/value learning has not been studied. Our
framework, in contrast to the above works, introduces an active, abstraction-aware advice elicitation
framework that selectively queries experts in high-uncertainty states and integrates their guidance
directly into relational policy learning process.

6. Conclusion

We considered the challenging problem of learning symbolic policies from structured and unstruc-
tured domains in the presence of human expert. The key idea in our work is inspired by active
learning that assumes the presence of a human expert who can be queried with a predefined budget.
Instead of obtaining specific action labels before learning commences, we solicit for soft constraints
on the policy by explicitly computing the uncertainty over the policy, and update the learned policies
accordingly. Our algorithm handles unstructured data by constructing a symbolic representation by
employing object-centric identification from images. We performed experiments in both structured
and unstructured domains and demonstrated the value of employing a rich representation as well as
the importance of access to the human expert while learning.

There are several possible directions for future research. Handling both structured and unstruc-
tured information in a single domain (i.e., truly multimodal) is an interesting direction. Employing
richer forms and modalities of domain knowledge and developing methods that can treat these con-
straints in an unified manner would allow richer models to be learned. Scaling these methods to
larger tasks by developing fully differentiable models can demonstrate the value of neurosymbolic
learning. Extending the algorithm to other RL methods to develop a suite of RRL library is an ex-
citing next step. Studying the quantity of advice (e.g., how frequently the agent should interact with
a human expert) and the quality of advice (e.g., mechanisms for modeling adviser reliability, adap-
tively weighting input, and integrating external knowledge), represent complementary avenues for
future work. Finally, learning from different domain knowledge sources (both humans and LLMs)
in a seamless manner is an exciting direction for future research.
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