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Abstract
This paper discusses the cognitive cycle of the Selective Tuning Attentive Reference (STAR) ar-
chitecture and compares it to cognitive cycles of existing cognitive architectures at different levels
of abstraction. First, we briefly discuss the purpose of the cognitive cycle and how it can be spec-
ified. Second, we propose a Core Model that includes modules and connections found in typical
cognitive architectures. Third, we analyze descriptions of cognitive cycles of 43 other cognitive
architectures and express them in the Core Model format to highlight existing gaps in research,
such as perception, attention, learning from experience, and metacognition. A report on the current
status of STAR is then provided. Lastly, we apply this framework to STAR cognitive cycle and
discuss how it addresses some of the identified gaps.

1. Introduction

The cognitive architecture STAR (Tsotsos, 2013; Tsotsos & Kruijne, 2014) is a computational probe
into the roles of attention and active perception in an embodied 3D real-world visual agent. We aim
to build and test a cognitive architecture that models human visual abilities to a level of detail that
may yield experimentally falsifiable human predictions (mostly at a behavioural level) and practical
machine implementations. In this paper, we will focus on the cognitive cycle of STAR and provide
a current description that highlights its differences from other architectures.

A cognitive cycle is a high-level specification of how cognitive architectures operate, describing
the computational processes transforming system inputs into outputs. Despite its obvious impor-
tance, this concept has not received the attention it deserves. In the literature, most descriptions
of cognitive architectures focus on their components rather than connections among them or the
overall processing pipeline. Moreover, there is no standardized representation for cognitive cycles
in the literature. As a result, both textual and diagrammatic depictions of cognitive cycles across
different cognitive architectures vary significantly in the amount of detail and level of abstraction,
making direct comparisons difficult.

To address this problem, we propose a Core Model intended as a unified representation of a
cognitive cycle at the computational theory level (in Marr’s terms). The model represents the cog-
nitive cycle as a computational framework based on the core cognitive abilities, such as perception,
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memory, learning, reasoning, and motor control. We then summarize the characteristics of cogni-
tive cycles of 43 cognitive architectures using the Core Model representation to reveal understudied
abilities in existing cognitive architectures to guide their future development. Next, we provide an
overview of the latest version of our STAR architecture. Lastly, we apply the Core Model to STAR
and compare its cognitive cycle, representation, and tasks with those of other architectures. In ad-
dition, we discuss various sources of novelty in STAR, such as a ‘first principles’ foundation, an
active embodiment, a sophisticated realization of visual attention, and a novel learning paradigm.

2. What Is a Cognitive Cycle?

There are many ways of describing how different living and artificial organisms operate throughout
their lifespan. One widely accepted proposal by Newell (1990) is based on the following 4 time
scales (bands) of human action: 1) social band spanning activities that take days to months, 2)
rational band for actions lasting from minutes to hours, 3) cognitive band from 100 ms to 10
sec, and, 4) biological band for neural operations that take 10 ms or less. At each scale, various
aspects of cognition are revealed, from continuous development, learning, and decision-making to
perception, reflexive actions, and fine-grained motor control.

For intelligent agents the cognitive band is arguably the most important because it encompasses
observable behaviors that occur within seconds, i.e. typical interactions with the environment, such
as perception, motor actions, utterances, decision-making, etc. At this temporal scale, the basic
operation cycle of any living or artificial organism consists of the following steps: perceiving the
environment using available sensors, processing the information, and performing some action if
necessary. This process received different names in the literature—in neuroscience it is known as
the perception-action cycle and in robotics as the sense-plan-act cycle. In cognitive architectures, it
is referred to as the cognitive cycle. Simply put, a cognitive cycle defines how inputs into the system
result in observable behavior. We will use this term for the remainder of this paper.

Cognitive architectures are complex systems, thus it is useful to consider their operation at dif-
ferent levels of abstraction. Marr’s three-level model (Marr, 1982) provides a suitable framework
that isolates theoretical, computational, and implementation aspects of information-processing sys-
tems. When applied to cognitive architectures, the following needs to be specified at each level:

1. Computational theory: problem description, verbal and/or diagrammatic depiction of the system,
its components, connections and information flow among them.

2. Representation and algorithm: concrete definition of task(s) that are required to solve the prob-
lem, expected inputs and outputs, data structures suitable for representing them, and algorithms
for computing outputs from inputs.

3. Physical implementation: an instance of the system that can perform these tasks to solve a prob-
lem. The system can be implemented in a programming language on a hardware device (e.g.,
computer or robotic platform). At this level, additional language- or hardware-specific details
that are not relevant for the earlier steps may be included.

Additional constraints may be imposed at every level to ensure a match with known or hypothe-
sized properties of human cognition and biology. For example, verbal theories of cognition derived
from psychophysical studies can guide high-level design of the system (e.g., basic modules and
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Table 1: A list of cognitive architectures used for the analysis presented in this paper.

1. 3T (Bonasso et al., 1997) 16. COGNET (Zachary et al., 1998) 31. IMA (Kawamura, 2023)
2. ACT-R (Anderson et al., 2004) 17. CogPrime (Goertzel et al., 2013) 32. Kismet (Breazeal, 2003)
3. ADAPT (Benjamin et al., 2004) 18. CoJACK (Ritter et al., 2012) 33. LIDA (Franklin et al., 2016)
4. AIS (Hayes-Roth, 1995) 19. Copycat (Hofstadter & Mitchell, 1994) 34. MDB (Bellas et al., 2010)
5. ARCADIA (Bridewell & Bello, 2016) 20. CORTEX (Bustos et al., 2019) 35. MicroPsi (Bach, 2009)
6. ART (Carpenter & Grossberg, 1987) 21. DAC (Verschure, 2012) 36. NARS (Wang, 2022)
7. ATLANTIS (Gat, 1998) 22. DIARC (Scheutz et al., 2013) 37. PRS (Georgeff & Lansky, 1987)
8. BBD (Edelman, 2007) 23. Disciple (Tecuci, 1991) 38. SASE (Weng, 2002)
9. BECCA (Rohrer, 2012) 24. DUAL (Kokinov, 1994) 39. Soar (Laird, 2022)
10. CARACaS (Huntsberger et al., 2011) 25. EPIC (Meyer & Kieras, 1997) 40. SPA (Eliasmith et al., 2012)
11. CERA-CRANIUM (Arrabales et al., 2009) 26. ERE (Bresina & Drummond, 1990) 41. Subsumption (Brooks, 1986)
12. CHREST (Gobet & Lane, 2012) 27. FORR (Epstein et al., 2002) 42. TCA (Simmons, 1994)
13. CIRCA (Musliner et al., 1993) 28. GLAIR (Shapiro & Ismail, 2003) 43. Ymir (Thórisson, 1998)
14. Clarion (Sun, 2007) 29. HCA (Haikonen, 2007) 44. STAR (Tsotsos & Kruijne, 2014)
15. Cog (Brooks et al., 1999) 30. ICARUS (Choi & Langley, 2018)

information flow). At the lower levels, timings, concrete cognitive functions implemented by the
algorithm, relation to areas of the brain involved in the computation, etc. can be introduced. These
constraints determine computational complexity of the cognitive cycle in terms of time and memory
resources required Tsotsos (2017), and help narrow down choices of representations and algorithms.
Concrete specifications are also essential for designing tasks, scenarios, and metrics for qualitative
and quantitative evaluation.

3. Cognitive Cycles of Existing Architectures

The remainder of the paper analyzes a diverse set of 44 architectures listed in Table 1. These
architectures were selected out of the set of 84 surveyed in our past work (Kotseruba & Tsotsos,
2020, 2025) because they offered detailed diagrams and descriptions that allowed for our analysis.

We start by summarizing cognitive cycles of the 43 cognitive architectures at the first two levels
of abstraction. The 44th architecture, STAR, will be discussed later. Although all of these architec-
tures were implemented in some form, the exact technical specifications are not available for many,
thus we omit the discussion of the physical implementation level.

3.1 Representations and Algorithms Level

Recalling the previous section, three aspects of cognitive architectures are defined at this level:
representations, algorithms, and tasks. Nearly all cognitive architectures are an eclectic mix of
representations and algorithms that are difficult to categorize due to the following reasons. First,
specification at this level is often incomplete. Second, specifications are not expressed at the same
level of detail and using the same terminology. Third, there are no established taxonomies that could
cover the large variety of representations and algorithms found in different architectures.

In any case, the majority of architectures do not take a strong stance on representation, that
is, they do not assert that specific formalisms are necessary or sufficient. Even when computa-
tional parsimony is declared as a goal, additional representations are often introduced for practical
reasons. For instance, ACT-R and Soar are architectures whose aim is finding a minimal set of pre-
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dominantly symbolic computational approaches that enable human cognition, however, both have
been interfaced with a wide variety of subsymbolic representations, such as neural networks. On
the other end of the spectrum are cognitive architectures that allow any representation as long as it
performs the required function, e.g. Polyscheme (Cassimatis et al., 2009).

Another aspect of architectures defined at this level of abstraction is the set of tasks they perform.
Here, descriptions are also often imprecise, meaning that the acceptable inputs and desired inputs
are not fully specified. An even bigger issue is that the majority of implementations are designed for
a single task, i.e. a different instance of cognitive architecture is built each time the task changes.
Only few architectures are implemented to support switching between tasks within a single instance
(e.g. SPA, Eliasmith et al. (2012)).

In terms of task variety, cognitive architectures taken as a group possess many abilities ranging
from solving abstract reasoning problems, categorization and pattern matching to real-world tasks
that involve reasoning and motor skills. In our past works (Kotseruba & Tsotsos, 2020, 2025), we
identified hundreds of unique tasks but found little overlap among them, even in relatively niche ar-
eas (e.g. analogical reasoning). This adds to the difficulties with comparing different representations
and assessing their benefits and limitations.

3.2 Computational Theory Level

To analyze cognitive cycles at the computational theory level, we consider both theories of cognition
and structure of the cognitive architectures.

3.2.1 High-Level Theories

Most of the cognitive architectures in our list were inspired by one or more high-level theories of
cognition. This inspiration may take a direct form, i.e., the architecture is built to test a specific
theory of cognition. Some examples of this are ACT-R based on the ACT theory (Ritter et al.,
2019), CHREST and Chunking Theory (Gobet et al., 2001), BBD and Neural Darwinism, ART
and Adaptive Resonance Theory (Grossberg, 2021), and STAR implementing the Selective Tuning
model of attention (Tsotsos et al., 1995). Sometimes, multiple theories are combined. For instance,
Clarion (Sun, 2020) merges elements of Soar (division between procedural and declarative memory)
with distributed representations. Ymir’s design is based on blackboard systems (Engelmore, 1988),
schema theory (Arbib, 1981), and behavior networks (Maes, 1991). Other architectures contain a
mix of indirect influences, such as folk-psychological theories or concepts, as well as representations
and algorithm ideas from other architectures, without explicit commitment to any specific theories.
Lastly, some architectures incorporate existing implementations for specific functions, e.g., ADAPT
(Benjamin et al., 2004) delegates decision-making to an instance of Soar.

Theories themselves differ greatly in the level of detail and amount of empirical support they
have received. Some contain only general guidelines but do not describe the computation or compo-
nents explicitly. For example, Newell’s Unified Theories of Cognition (Newell, 1990) that inspired
many architectures is built on findings from cognitive science but focuses mainly on the high-level
desiderata (e.g. symbolic computation, parsimony, rationality). Minsky’s Society of Mind (Minsky,
1986) postulates that cognition is enabled by a constellation of interacting heterogeneous agents
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Figure 1: Diagrams of several cognitive architectures: a) 3T (Bonasso et al., 1997), b) Kismet
(Breazeal, 2003), c) EPIC (Kieras et al., 2016). Note the differences in graphical representations
and naming of the modules, as well as varying granularity at which components are depicted.

but neither refers to human data nor provides a concrete computational framework to build upon.
Other theories, such as Global Workspace Theory (Baars, 1988), Theory of Cerebellar Function
(Albus, 1971), and Selective Tuning (Tsotsos et al., 1995) are grounded in cognitive science and
provide more concrete descriptions suitable for implementation and testing. Blackboard architec-
tures (Engelmore, 1988), BDI (Rao & Georgeff, 1995), and behavior-based robotics (Brooks, 1986)
are examples of formalized computational frameworks that were motivated by some aspects of hu-
man or animal cognition but even more so by the need to solve real-world engineering problems.

There are no theories of cognition that provide a complete description of all known cognitive
processes. Thus, in any given architecture only some components have a theoretical foundation,
while the rest are either omitted or hypothesized. The latter may lead to filling the gaps in theory,
which is one of the main goals of building the cognitive architectures in the first place. Another
consequence of the incomplete theories is that most cognitive architectures focus on investigating
specific areas of cognition, e.g., memory or decision-making, rather than all of them.

3.2.2 Core Model of Computation

Since cognitive architectures are often based on vague, incomplete, or overlapping theories, compar-
isons at this level are difficult. Thus, here we will consider organization and information flow. To do
so, we gathered textual and diagrammatic representations of 43 architectures in Table 1 (excluding
STAR). However, direct comparisons could not be made due to the following issues:

1. There is no common terminology for naming modules or components of the architectures. For
example, modules of the architectures originating from neuroscience (e.g. BBD, Leabra) are
often labelled as corresponding brain areas, whereas agent and robotic architectures use a wide
variety of terms, e.g. advisors, blackboards, world model, schemas, etc., that do not have direct
cognitive or neural correlates. More recent projects that borrow concepts and implementations
from multiple past works operate with an even more eclectic mix of terms.

2. The number and granularity of components varies across architectures. For example, memory
in some systems is a unified short- and long-term storage, while in others it is divided into
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numerous specialized components. Similarly, decision-making and learning may be represented
as module(s) or processes, or their functions may be distributed among other components (e.g.
reward assignment, motor control, memory).

3. Despite some commonalities in the visual language used in the diagrams (e.g. boxes for modules
and arrows for information flow) there is no common level of abstraction across the diagrams. As
a result, some architectures are visualized in very broad strokes while others are highly granular
and even include implementation details (see Fig. 1). Even within the same diagram, different
components may be shown with different levels of detail.

4. Diagrams do not always match the text. Sometimes components or connections are not explained
and sometimes modules or processes described in papers do not appear in the diagrams.

5. For many architectures, there is no complete description of the cognitive cycle from inputs to
outputs. This is somewhat unexpected given that architectures in our selection are implemented.
Therefore specification should exist in some form for all of them.

To compare the architectures, it is necessary to express them in the same terms and visualization
format. We propose a Core Model—a representation based on the set of core components we
identified in our previous work, which includes modules found in a broad and diverse set of cognitive
architectures, such as perception, short-term memory (STM), long-term memory (LTM), decision-
making, and motor module, as well as flows of information among the modules (see Figure 2). We
applied the Core Model to each system in our set of cognitive architectures by following these steps:

Perception

Motor
Decision 
-making

STM

LTM

TEMPLATE

Figure 2: Core Model with modules (black rect-
angles) and connections (dashed arrows) found in
43 cognitive architectures. STM and LTM stand
for short- and long-term memory, respectively. A
looped arrow denotes metacognition. The green
line separates the agent from the environment.

1. Identified structures in the published dia-
grams that correspond to the modules in our
template;

2. Traced inputs and outputs into each module
and highlighted them in the template;

3. In our template, removed elements with-
out correspondences in the architecture di-
agram;

4. Traced flow from inputs to outputs (cogni-
tive cycle) based on diagrams and descrip-
tions.

After completing this process, we com-
bined all diagrams by counting the frequencies
of connections (arrows) and identified typical
cognitive cycles, i.e., as defined earlier, cycles that specify how inputs into the system result in ob-
servable behavior. Figure 3 shows a graphical summary highlighting the most common connections
among modules and two most common cycles. A shorter cycle for reactive actions involves only
perception and motor modules to ensure the quickest possible responses to stimuli. A longer cycle
consists of multiple steps: 1) processing perceptual input, 2) depositing the results into temporary
storage (STM), 3) decision-making using information in STM and LTM and self-reflection, and 4)
planning and executing motor commands.
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Numbers in square brackets: 
1,2 - Sensorimotor loop 
3 - Priming, top-down attention, 
active perception 
4 - Motor feedback 
5 - Learning 
6 - Metacognition

Environment

Information flow

Cognitive cycle

Perception

MotorDecision 
-making

STM

LTM 1
3

2
4

5

5

6

43

36

40

11 515

22

29 3938

21

29

26

43

8

6 deliberative

reactive

Figure 3: Modules and information flow of 43 cognitive architectures (excluding STAR) expressed
in the Core Model format. STM and LTM stand for short- and long-term memory, respectively.
Small numbers next to each arrow are counts of architectures that contain said arrow; thicker arrows
represent more common connections and vice versa. Arrows labelled with red boxed numbers show
under-represented connections and the text will refer to them by that number. Blue and and orange
arrows show two typical cognitive cycles: a long one for deliberative actions and a short one for
reactive actions, respectively.

The main benefit of expressing all architectures in a Core Model representation is that it provides
a visual summary of existing gaps in theory and implementations. A closer look at Fig. 3 shows
several areas where improvements are needed:
• Sensorimotor integration (arrows 1 and 2 ) is a well-known property of biological systems but

is conspicuously missing in many architectures. This includes sensory information for motor
commands and feedback from the motor system (efference copy).

• Priming, top-down attention, and active perception (arrow 3 ) are an important part of biological
perception, which is recurrent and incorporates internal biases, task, and knowledge. Most imple-
mentations of perception are feedforward and bottom-up, meaning that it is single pass and driven
mainly by the properties of the scene.

• Motor feedback (arrow 4 ), similarly to sensorimotor integration, is necessary for decision-
making. Current systems rely mostly on perception to assess changes in the environment and
struggle to determine which changes were caused by the agent itself.

• Learning (arrow 5 ) in cognitive architectures is treated mainly as accumulation of declarative
and procedural knowledge. Broadly speaking, this is represented by two pathways in the diagram:
1) transfer of perceived observations from short-term to long-term memory (e.g. memorizing
instructions or locations of objects in the room) and 2) learning from experience (e.g. prioritizing
successful decisions/actions made in the past in similar situations).

• Metacognition (arrow 6 ) to some extent is found in about half of the cognitive architectures we
analyzed, mainly for debugging purposes. Fewer use the information about the internal processes
to aid in decision-making and learning.

A common feature of the missing components is that all of them are necessary for solving
everyday problems that require perception and navigation in 3D, adaptation to new environments,
and learning from experience.
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3.3 Core Model and Common Model of Cognition

The Core Model has some similarities with the Common Model of Cognition (CMC)1 (Laird et al.,
2017). Both focus on the high-level organization of the system and flow of information within it.
There is also overlap in terms of basic modules out of which the system is composed.

The differences between these two frameworks stem from the strong influence of production
systems on CMC. First, CMC is based on three cognitive architectures—ACT-R, Soar, and Sigma,
whereas the Core Model is more data-driven and is a result of analyzing dozens of architectures.
Second, CMC emphasizes the distinction between procedural and declarative memory, which is a
distinguishing feature of production systems. Our representation is more general and combines all
types of memory (procedural, declarative, episodic, etc.) within the LTM module. Third, CMC does
not include a decision-making component explicitly since in production systems most processing
occurs in memory. However, in many architectures decision-making is a separate module, thus we
include it in the Core Model.

4. STAR Cognitive Cycle

Figure 4: High-level diagram of the STAR cog-
nitive cycle. By default, STAR Agent (SA)
explores, discovers and assimilates information
about its world. When a user/teacher provides a
task/information or event happens, SA performs
or reacts and returns to its default state.

STAR is a visuospatial, purposefully behaving,
mobile agent. The STAR cognitive architec-
ture is not intended as a framework for building
new applications that display intelligent behav-
ior. Rather it should be regarded as a computa-
tional probe into the roles that active vision and
attention play in an embodied intelligent agent
in a real 3D world. Here we document the most
recent version of STAR .

4.1 A Brief Introduction to STAR

The history of cognitive architectures provides
a strong foundation for STAR as is clear from
the review of Kotseruba & Tsotsos (2025). At
the computational level, STAR belongs to a
small group of architectures that are grounded
in a theory of cognition with ample empirical
support. STAR is based on a number of strong foundational elements.

First, STAR was founded on the success of the Selective Tuning (ST) model of visual atten-
tion, which has predicted many novel aspects of human visual attention, now strongly supported
experimentally (summarized in Carrasco (2011); Tsotsos (2011); for 2 recent results see Bartsch
et al. (2023); Schulz et al. (2024)). Within ST is a very influential saliency model, AIM (Bruce &
Tsotsos, 2005). STAR is envisioned as the body and brain within which ST would operate.

1. It was initially introduced as the Standard Model of the Mind (SMM) by analogy with the Standard Model of particle
physics. However, shortly after, SMM has been renamed to CMM.

8
88



THE STAR COGNITIVE CYCLE IN CONTEXT

Secondly, Visual Routines (Ullman, 1983) inspires the use of programs to encode step-by step
processes for solving visuospatial problems. They require modernizing and has led to our Cognitive
Programs (Tsotsos & Kruijne, 2014).

The third foundational element is the classic and well-proved Means-Ends Analysis problem
solving method (Newell et al., 1959). As with Visual Routines, some updating is needed here too
because its apparent assumptions regarding its connection to perception are no longer in agreement
with current understanding of vision (in ways similar to the same issue with Visual Routines).

Fourth, STAR is all about active perception, active observers that solve visual problems in 3D
(Bajcsy et al., 2018). This provides the basic closed-loop perception-action cycle within STAR as
is featured in the active perception literature since the mid-1980’s.

Fifth, STAR is intended to be an embodied visual agent and thus our past experience with
robotic binocular camera systems (Milios et al. 1983, Herpers et al. 1999) roots the design and
implementation of a new convergent binocular camera system and robot head with human-like form
and performance (submitted).

Finally, the developmental literature has motivated our Active Developmental Bootstrapping
learning strategy (Aslin et al., 2023; Gopnik et al., 2017; Siu & Murphy, 2018). This blends ac-
tive perception, development of visual capabilities, and learning methods in a novel experiential
framework.

4.2 A ‘First Principles’ Description of STAR

World

act on the world
Teacher

Task

Agent

3D Physical 
Environment

sense the world
Learning

Executive

Thinking

Memory

Perception

Behaviour

Sensing & 
Motor

Action

Figure 5: Components of STAR: Executive, Thinking, and
Sensing & Motor (functions in white font). Overlapping
areas indicate bidirectional flow of control and data.

The basic STAR cognitive cycle is
shown in Figure 4. Without a user
task, a STAR Agent (SA) explores,
discovers and assimilates knowledge
about its world. It reacts to events in
the world (reactive behavior), it can
accept and absorb knowledge (from
a teacher), and it can perform a user
task, exploiting knowledge that it al-
ready has learned supplemented by
exploration as required (deliberative
behavior).

At a less abstract level of descrip-
tion, Figure 5 depicts SA’s four pri-
mary interacting components, drawn
as colored disks in the figure and la-
belled Executive, Thinking, Sensing & Motility, and Learning. The intersecting disk regions high-
light secondary components that require multidirectional coordination among intersecting compo-
nents, Memory, Perception, Action and Behavior. The Core Model above has the main components
of STM, LTM, Decision-Making, Perception and Motor. This overlaps significantly with ours which
is to be expected; however the interactions seen in past architectures seem more limited. We ap-
proach the problem of detailing these components in a first principles manner, by rooting to several
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basic questions whose answers we believe would be relevant to any such agent; however, the replies
presented are specific to STAR.

With respect to the Core Model, much of what is presented here conforms to commonalities
with past architectures. However, much is also intended to address the weaker aspects denoted by
the 6 red numbers of Figure 3 and these will be noted.
What comprises the physical world external to the agent and what roles can it play interacting
with the agent’s behaviour? The real 3D physical world is represented by the World disk in the
figure. It includes not only the physical environment SA lives in, but also a Teacher that provides
declarative and procedural knowledge to SA as needed (including advice and feedback while per-
forming a task), and a User that can pose a task for SA to solve. SA can sense the world, can move
within the world and can manipulate the world. SA can communicate with the User and Teacher
using Imperative English (Kunić, 2017). Sensing & Motility, Perception and Executive handle the
processing of these inputs. Currently, we are not considering any dynamic aspects of the physical
world, i.e, it is static, and SA’s embodiment does not include a manipulator nor other means for
world change.
How does the agent interact with the world? SA has a physical embodiment. The Sensing &
Motility components of the embodiment physically interact with and sense the world. SA actively
interacts with its world by moving in the environment in any manner it wishes, and employing
any sensing viewpoint needed in order to solve its task. There are two kinds of tasks: reactive
and deliberative. The former is sensed by the Sensing component, recognized by Perception, but
connected directly to Action and then Motility bypassing the Executive or other components. Action
needs to have table-lookup-like capabilities to decide on reactions quickly, and these can be learned.
It is important that the reactive action and any side-effects be recorded because they may change the
agent’s or world state. Deliberative tasks, on the other hand, require the full set of components in
Figure 5.

In order for the STAR Agent to be an active observer, it is necessary to enable eye, head and
body movements. To this end, we have designed and constructed a novel binocular robotic camera
system (submitted). This has 9 DOF mechanically (including neck motion) and 4 DOF optically,
with camera baseline and overall size similar to a human head. It has convergent stereo and we
have developed the first algorithm for computing horizontal and vertical disparities from convergent
stereo images (forthcoming). We have a new method for controlling this head for saccadic eye
movements achieving accuracy similar to human (although a bit slower) (submitted). This head will
be mounted on a commercial robot dog platform that would provide motion along the floor in our
test environment as well elevation changes for the head. Thus, the STAR embodiment will be a fully
active observer that can cover the space of all the observed human eye, head and body motions that
we documented experimentally and briefly describe in the next section.

The primary sensor will be the visible light binocular camera system just mentioned. There will
also be a form of proprioception via motor feedback from the robots. Although the current state-of-
the-art in computer vision seems of high quality and we can build upon it, there are specific aspects
missing, primarily, visual attention. Attention in modern systems seems re-imagined and has little
to do with actual attention as humans embody it (Mehrani & Tsotsos, 2023). The Selective Tuning
visual attention model will be used in STAR. Briefly, ST does more than selection which is classi-
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Figure 6: a) The setup and subject for a visual search trial (target-absent) (Wu & Tsotsos, 2025).
b) 3D scanpath recorded from this trial. Note the large viewpoint changes and numerous fixations
needed to confirm that the target is absent.

cally part of many past cognitive architectures and computer vision systems. ST provides several
human attention mechanisms including priming (global bias), cueing (local bias), foveal selection,
surround suppression in spatial, feature, and object dimensions (to improve signal-to-noise), bind-
ing and localization (via top-down search), peripheral saliency, eye movement control, attentional
sample for working memory, and more (Tsotsos, 2011, 2022). The Perception component, directed
by the Executive, depends on ST operating within its visual processing hierarchy. This corresponds
to arrow 3 in Figure 3.
How does the agent exploit what is known about its world, decide how to act, and understand
the outcomes of its actions? In order to be somewhat concrete about these questions, some context
is helpful. STAR will be tested on a 3D physical visual search task. Specifically, it is the task de-
scribed in Wu & Tsotsos (2025), the first documented experimental study that details human active
observer behavior when searching in a real 3D world. There, a human experiment was conducted
by building recording and analysis tools (described in Solbach & Tsotsos (2021)) and deploying
them in a physical setup containing several tables, each having a few cages (as scaffolds) containing
a number of toy objects (set sizes of 20 to 60) in varying 3D poses. A human subject was shown a
target object in a canonical pose, then asked to find it. We recorded the subject’s 6DOF head motion
and fixation gaze changes as they searched for a given target. See Figure 6.

This is a classical visual search task but fully in a static three-dimensional world, with an active
observer. The data from this, and from a related experiment where active subjects judged sameness
of 2 given 3D objects Solbach & Tsotsos (2023) document the quality of behavior we seek for SA.
The exact same setup is the setting for SA except that the tables will be removed and the entire setup
placed on the floor, so that the robot dog can actively search the space. The goal is not to only be
inspired by human behavior but to explain it.

With this context, the questions posed can be addressed. First, how does an agent exploit
what is known about its world? It is beyond the scope of this paper to cover this breadth and we
focus on our novel aspects. Most of the STAR functionality will be enabled by Cognitive Programs
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(CPs) (Tsotsos, 2013; Tsotsos & Kruijne, 2014). This approach updates and expands visual routines
originally proposed by Ullman (1983). The idea of CPs is to provide the following:
• a set of primitive actions that specify basic operations on the visual hierarchy, memory and other

components of STAR;
• a language for providing the model with task or instructions;
• mechanisms for decomposing the task into primitive elements;
• mechanisms for chaining primitive actions to complete the task, set up expectations for the effects

of actions, track its execution, determine success or failure, and learn from the experience.
The exploit part of STAR’s cognitive cycle is triggered by the presentation of a user task. In

terms of task, STAR is distinct as it will be applied to solving real-world perceptual problems in 3D
that exercise and test the full breadth of visual attention functionality of ST. Macmillan & Creelman
(2005) give an extensive picture of psychophysical tests and there are many that seem unexplored
computationally (specifically, the tasks of absolute identification, ABX or match-to- sample, cat-
egorization, classification, correspondence, detection, detection with uncertainty, discrimination,
fixed discrimination, m-alternative forced choice, multiple-look experiment, oddity, rating exper-
iment, recognition, roving discrimination, same-different experiment, simultaneous detection and
identification). Also, these experiments have a huge history of results in the literature, however,
the vast majority of studies consider these tasks in more passive and 2D settings. Our goal is for
STAR to live in a real 3D world as an active visual problem-solving actor (Bajcsy et al., 2018). The
kinds of visual problems we are considering are the same, or extensions of, the visual problems first
considered by Visual Routines (Ullman, 1983). Visual routines (VR) are composed of sequences
of elemental operations. Routines for different properties and relations share elemental operations.
Using a fixed set of basic operations, the visual system can assemble different routines to extract an
unbounded variety of shape properties and spatial relations. The basic operations Ullman described
include include shifting of the processing focus, indexing to an odd-man-out location, bounded
activation, boundary tracing, and marking.

The problem of assembling operations into meaningful visual routines is only abstractly men-
tioned by Ullman and remains a central task for our research and cognitive science in general (Tsot-
sos et al., 2021). The idea of dynamic composition of behaviors for tasks is the foundation of
means-ends analysis (MEA) Newell et al. (1959). However, many aspects of both VR and MEA
proposals have become somewhat dated due to decades of knowledge gained by research in compu-
tational and cognitive science. Ullman’s VRs employ only selection in a saliency map for attention,
not the breadth of attentional mechanisms known to exist. MEA seems to assume that the sensing
mechanism is fixed whereas in ST, as in humans, vision tunes processing depending on expectations.
The tuning not only adds efficiency but it also improves signal-to-noise and often disentangles visual
representations to make what is seen clear. Although MEA methods do indeed track expectations
with perception, they appear independent, seemingly following a Marr-style processing regimen
as did Ullman, which now is known to not represent human vision. Our Cognitive Programs are
proposed as a modernized version of both.

Given a task, SA’s Thinking component will search Memory for the Cognitive Programs suitable
for the requested Task. If there is one, it is passed on to the Behavior component. If there is no CP,
then one is assembled using existing ones or reasoned options (in a trial-and-error manner). The
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Behavior component is tasked with taking a candidate CP, in its generic form, and tuning it so that it
can execute in the current world and agent state. Behavior also makes predictions about the effects
of any actions the CP will take.

Second, how does an agent decide how to act? As the brief description of CPs suggests, it
is assumed that actions to be taken towards a task are specified in the CP. A CP is proposed as the
sequence of actions required to solve the given task. CP’s however, are maintained in memory in
a generic state; we term them CP methods. CP methods thus require adaptation or tuning to the
current state of the world and the current state of the agent. This tuning is the task of Behavior,
to turn a generic sequence of actions into a sequence of actionable behaviors, the distinction being
that behaviors act on the real world while methods cannot. In order to tune, Behavior must have
access to Memory where state information is stored. It may also be the case that some aspect of a
CP method requires tuning of some variable who value is unknown. Behavior can then request that
Executive tune Perception for the observation of that variable. The output of Behavior is a tuned CP
method, termed a script, ready for execution and passed off to Action. Action then sequences the
steps to the appropriate Sensing & Motility elements.

Finally, how does an agent understand the outcomes of its actions? Intelligent agents need
to be maximally sensitive to the task-relevant while remaining vigilant about the task irrelevant,
and thus some connection between perception, their mission and task/world knowledge must exist.
One such connection could be an effective use of inductive reasoning. Inductive reasoning takes
specific information (premises) and makes a broader generalization (conclusion) that is considered
probable. The only way to know is to test the conclusion; a passive sensing strategy could only do
this by accident. Passive sensing thus impedes the use of any form of inductive reasoning. Part of the
duties of the Behavior component is to develop the set of time-ordered expectations for the selected
CP. These expectations must be communicated to the Executive and Perception, in sequence, so that
the Executive can prepare the Perception system to be tuned in such a way as to be maximally able
to observe those expected changes. For example, if the camera system is not looking at the right
part of the world, it will miss an expected action. (Arrows 1 , 2 , 4 , and 6 in Figure 3.)

Specifically, the Executive provides three kinds of preparation for Perception: it directs the
choice of imaging geometry and sensor parameters to apply for the next scene sample to be acquired;
it tunes the visual hierarchy, where possible, to be most receptive to the kinds of visual information
needed for the task at that moment; and, it biases the interpretation process for the categorical
classes expected from the current sampling action. As expectations are confirmed by observation,
the CP moves along. When denied, the CP choice must be re-considered. The observed mis-match
with expectations serves as a feedback signal for learning how that CP performs and to guide re-
planning of an alternate one. In this way, by setting up expectations, optimizing for their visual
confirmation, re-setting when not confirmed, and recording this series of events, the SA may be
thought to understand the outcomes of its actions. (Arrows 3 and 6 in Figure 3.)

How is knowledge and experience about the world and behavior captured and remem-
bered? STAR proposes a novel learning paradigm, motivated by current developmental science.
Any one who has raised children, or even just observed them, knows that children become very
adept from a very young age for visuospatial tasks similar to those on which we are focused. Thus
the question of starting point arises: what is innate at birth? Although debate on this abounds, the
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Figure 7: STAR’s Learning Paradigm—Adaptive Developmental Bootstrapping over time. From
“birth”, STAR matures, accumulates experience, and converts it into new functionalities.

developmental literature suggests a possible answer: the process of developmental bootstrapping
Aslin et al. (2023). Developmental bootstrapping considers that a low-level system, mediated by
subcortical mechanisms, is modulated by a higher-level cortical system that operates in tandem with
the subcortical system. The innate capabilities of the low-level system are then refined and matured
under guidance of the higher-level system.

This basic idea is complicated by the fact that the visual system machinery and and physical sub-
strate mature with age. Siu & Murphy (2018) provide a nice summary of the many neuroanatomical,
physiological and functional changes that occur during a lifetime, both as they develop and then as
they degrade. Taken together, with additional inspiration from Gopnik et al. (2017) regarding how
behavior moves from exploration to exploitation with age (note the roles these two basic dimensions
play throughout the STAR description), STAR proposes the Active Developmental Bootstrapping
learning paradigm (Figure 7). Figure 7 uses the basic agent drawing of Figure 5 to illustrate 3
important elements: 1. STAR’s birth explicitly includes a small set of innate abilities—the agent
disks are smallest; 2. STAR’s abilities grow with time—the disks grow in ability over time; 3.
Growth is determined by a combination of experiential learning, architectural maturity and func-
tional expansion—the three axes that underpin Active Developmental Bootstrapping. (Figure 3
arrow 3 .)

STAR will assume a 2-year-old child as starting point whose innate capabilities include: eye,
head and body movements, binocular fusion, stereopsis, feedforward and feedback connections
within visual processes, with horizontal and intra-area connectivity (Siu & Murphy, 2018). It is
assumed that these will be encoded as Cognitive Programs with movement functionality for our
binocular head and a basic visual hierarchy. With this starting point we can imbue our agent with
substantial visual talent. Understandably, this starting point deserves debate and skepticism; it is the
hypothesis we wish to examine and certainly more plausible that the null or random starting points
of other learning strategies. This set of basic behaviors permit the agent to explore its world and to
complete simple visual tasks. Explore here may be as simple as noting areas of interest via visual
saliency and taking a look. Within ST is a broadly used saliency model AIM (Bruce & Tsotsos,
2005). We assume that such a saliency detecting ability is innate. Any directed view of a scene
involves foveation and thus selection of where to foveate using some criterion, for example, a visual
onset or offset, another kind of attention. Another basic behavior might be trying to see what is
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beyond the edge of the current visual image. This requires a change in viewpoint, another topic
where attention plays a role and we have existing well-tested past work (Ye & Tsotsos, 1999). With
each exploration action, some bit of new knowledge is added to memory. With each successful
action, the corresponding CP is strengthened. With each error, the CP can be modified by trial-
and-error or by advice from the teacher. With each new exploration, a CP may be enhanced to
slightly greater functionality, and depending on the tasks and circumstances it faces, developing an
increasingly more complete set of behaviors with experience. Importantly, with each subsequent
use of an existing CP, it may be streamlined to be more efficient. This was a surprising observation
in Solbach & Tsotsos (2023) and Wu & Tsotsos (2025). Accuracy was high from the first trial and
stayed high across trials. What improved over trials was efficiency in terms of fewer eye fixations,
less head motion and less body translation (for these experiments, subjects were given no feedback
after trials). These are among the roles of what Aslin et al. (2023) call the “higher level system”
that modulated and improved the lower level. This description does not explicitly take into account
the Architecture Maturation dimension of Figure 7, in part because the goals are difficult enough.
However, if our plan is successful we will consider one specific aspect, namely, the maturation
of long-distance top-down feedback (Siu & Murphy (2018), place full maturation of intracortical
myelin at age 35) and the development of ST’s surround suppression mechanism for which we have
explicit data (Wong-Kee-You et al. (2019), show that the suppressive surround of ST is not present
in children until about 8 years old and matures by 18 years old). (Arrow 5 in Figure 3).

4.3 Current Status of STAR

Finally, we summarize the current status of STAR. The genesis of the whole enterprise is the Se-
lective Tuning model and it has seen many implementations and tests over the 4 decades since its
appearance (some are shown in (Tsotsos, 2011)). A new implementation is underway.

A second key ingredient comes from Ullman’s Visual Routines concept. Although we needed to
modernize this as noted earlier into Cognitive Program, the implementation of CPs has been delayed
mostly due to lack of clarity as to what they should encode. This problem has recently been resolved
via our human experimental work which was the first to document how human subjects solve visual
problems in an active manner in 3D environments, as mentioned earlier. Those experimental results
make clear that the tasks, although visual in nature as problems to solve, involve a great deal of
navigation and viewpoint change as well. These are currently being considered in the Cognitive
Programs setting. Mean-Ends Analysis as a problem-solving framework also is important for STAR
but it too required some modernization. We have yet to test these changes.

The embodiment has recently been completed, specifically, a human-like robotic binocular cam-
era system. The connection between attention and eye fixation control, critical to the use of the robot
head, has an effective implementation (Wloka et al., 2018). Other aspects of attentive and active be-
havior such as perceptual hierarchies for objects shapes (Mehrani & Tsotsos, 2023), figure-ground
segregation (Mehrani & Tsotsos, 2021), color (Mehrani et al., 2020), and motion (Tsotsos et al.,
2005), saliency (AIM, Bruce & Tsotsos (2005)), active sensor planning for search (Ye & Tsotsos,
1999) all have successful implementations, as cited earlier, but have not yet been tailored to the
STAR architecture. The medium of communication between the world and the agent, Imperative
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English, is newly re-implemented (Kunić, 2017). Further research on the components shown in
Figures 4 and 5 is in progress.

4.4 STAR in the Core Model Representation

Perception

MotorDecision 
-making

STM

LTM

Figure 8: STAR in the Core Model representa-
tion. Deliberate and reactive cognitive cycles are
shown as blue and orange arrows, respectively.
Arrows and modules highlighted in red are ar-
eas of focus in STAR that are underrepresented
in other architectures (see Figure 3).

An alternative view of STAR using the Core
Model representation (Figure 8) allows com-
parisons with other architectures. While STAR
has similar components and connections, it fo-
cuses on the historically underrepresented areas
related to perception, attention, learning, motor
feedback, and error correction (highlighted in
red in Figure 8). Specifically, with respect to
the 6 highlighted (numbers in red boxes) top-
ics in Figure 3, a summary of what STAR con-
tributes follows.

• Sensorimotor integration (arrow 1 for Mo-
tor to Perception and arrow 2 for Perception
to Motor Communication). In STAR there is
a tight coupling between these. Perception
tunes the motor dimensions of achieving a new view of the world and the novel designed binocu-
lar camera system that STAR embodies is designed to expect and deploy such tuning. The motor
system provides proprioceptive feedback on all actions, specifically for all eye, head, neck and
body movements on the embodiment.

• Priming, top-down attention, active perception (arrow 3 ). The primary purpose of STAR is to
examine the role of these attentive components during visual problem-solving. The Selective
Tuning model provides for priming and top-down attention, the AIM model provides for saliency,
the data we collected experimentally documents the important roles played by navigating through
a search environment and adjusting viewpoints as needed and STAR is designed to include those
roles.

• Motor feedback to Decision-making (arrow 4 ). As mentioned above, the motor system provides
proprioceptive feedback for motor actions. This feedback must first be interpreted, i.e., the raw
motor, IMU or force feedback signals, just like raw image signals, require classification or ab-
straction in order to be useful. The Perception system of STAR is responsible for this and then
can pass them to the Executive function for further analysis.

• Learning (arrow 5 ). One of the novel contributions of STAR is the proposed Adaptive Devel-
opmental Learning framework. In the CORE model learning appears as arrows from short-term
memory and decision-making to long-term memory. In STAR, learning requires a discovery step
as well. It is not enough to think that anything in short-term memory will wind up in long-term.
Short-term memory also has a role as working memory - temporary storage for items to be used
again in problem-solving. They may or may not be important for LTM, but only the Executive
makes that decision. Discovery itself might involve perception and/or action as well, to con-
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firm novelty of items being considered for LTM. This is a more sophisticated concept than most
learning methods and is currently under development.

• Metacognition (arrow 6 ). This is covered in the paragraph above that deals with how the agent
understands its actions. The loop in the Core Model figure, as far as STAR is concerned, represents
the interplay among generation of expected outcomes of actions, tuning the perception system
to check those outcomes, determining if the outcomes sufficiently satisfy the expectations, and
deciding on the next course of action.

5. Conclusion

The cognitive cycle is a key component of any cognitive architecture determining its operation.
Even though implemented cognitive architectures necessarily have some specification of cognitive
cycle, it is often difficult to extract from literature and code. As a result, there are few comparisons
of architectures at this level of abstraction. In this paper, we introduced a Core Model framework
towards making such analysis possible. We defined core modules and connections among them,
applied this template to 43 existing architectures, and combined the results. This revealed a number
of issues, including lack of active perception and learning through feedback and self-observation.
We then presented our STAR architecture as a pathway to solving these issues which we aim to
achieve by relying on the established Selective Tuning model of attention, a novel Adaptive Devel-
opmental Bootstrapping paradigm, and a set of 3D vision tasks with ample human data. STAR is a
computational probe into the roles that active vision and attention play in an embodied intelligent
agent operating in a real 3D world. These roles are evident in perception, in testing expectations,
in viewpoint determination, in novelty detection, in every kind of visual task SA may be asked to
complete, and more. Exactly how each of these may be detailed is currently under study as is how
the full STAR architecture may be developed.
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