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Abstract 
Evaluation is a critical activity associated with any theory. Yet this has proven to be an exceptionally 
challenging activity for theories based on cognitive architectures. For an overlapping set of reasons, 
evaluation can also be challenging for theories based on generative neural architectures. This dual 
challenge is approached here by leveraging a broad perspective on theory evaluation to yield a wide-
ranging, albeit qualitative, comparison of whole-mind-oriented cognitive and generative 
architectures and the full systems that are based on these architectures. 

1.  Introduction 

A theory, at least for our purposes here, can be considered generically as a body of material that is 
about some phenomena (Rosenbloom, 2026). This is intended to include both what are traditionally 
considered as theories and models, however the distinction between the two might be drawn. The 
theories of central concern here are ones that are geared towards modeling whole minds, whether 
human, artificial, or some abstraction over both. This thus includes examples not only from 
cognitive science but also from artificial intelligence (AI) and artificial general intelligence (AGI), 
whether symbolic, neural, or hybrid. 

Such theories can typically be partitioned into architectures versus variable content 
(Rosenbloom, 2026). Architectures encapsulate the requisite fixed structures and processes, such 
as long-term and working memories, and mechanisms for learning and decision making. Variable 
content comprises the knowledge, skills, links, parameter values, etc. that is required on top of the 
architectures to yield effective behavior. Together, architectures and variable content yield systems. 

In this work, two general classes of such theories are compared: (1) cognitive theories based 
on symbolic technologies and their hybrid variants (Kotseruba & Tsotsos, 2020, provides a 
compendium of many such theories); and (2) generative theories based on neural network 
technologies, most particularly large language models (e.g., Brown et al., 2020). These two classes 
were chosen for comparison because they represent, respectively, the leading longstanding 
approach to developing theories of whole minds and a highly significant recent challenger to this 
leadership.1 

 
1 One important class of theories not included in this analysis is whole-brain theories that are built around 

architectures, such as Leabra (O’Reilly & Munakata, 2000) and Spaun (Eliasmith, 2013), that while neural 
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When comparing theories of whole minds one of the key questions must be the criteria by 
which they are to be evaluated. Accuracy with respect to the phenomena is typically the preeminent 
criterion. However, it is both a very difficult criterion to apply to theories of whole minds and not 
by far the only criterion that matters. A recent attempt to synthesize across a number of existing 
definitions of “theory” plus prior work on evaluating cognitive architectures (Newell, 1990; 
Langley, Laird & Rogers, 2009; Kotseruba & Tsotsos, 2020; Lieto, 2021) has alternatively led to 
the identification of a set of criteria that is notable for its breadth, depth, and overall structure 
(Rosenbloom, 2026). As shown in Figure 1, it turns out to be most appropriately represented as a 
directed graph in which nodes represent criteria and arrows indicate dependencies among them.  

Relevant prior work on theory evaluation can also be found more broadly in philosophy of 
science (e.g., Keas, 2018). But the point here is not to argue that this graph necessarily provides the 
best such set of criteria – it is quite possible to consider additional criteria as well as simplifications 
and reorganizations of the criteria already listed here – rather that the graph, as is, enables an 
informative, albeit qualitative at this point, comparative analysis of the criterial advantages and 
disadvantages of cognitive versus generative theories that extends significantly beyond simply 
which theories provide more accurate models of the phenomena they are about.  

This comparison proceeds here across two levels. The first level considers just the architectures 
themselves as theories. The second level considers the full systems that result when variable content 
is included. While architectural comparison may be considered to be at the heart of this work, some 
criteria can be difficult to evaluate just based on architectures – instead requiring full systems to do 
them complete justice – while the direction of other criteria may actually flip when variable content 

 
in technology are in many ways more in the tradition of cognitive architectures than of generative 
architectures. 

Figure 1: Graph of evaluation criteria for theories. An arrow from one criterion to another indicates that 
the former depends on the latter. The roots of the graph, highlighted in bold, have no other criteria 
depending on them. Adapted from Rosenbloom (2026). 
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and the resulting full systems are considered. Thus, a complete picture requires considering both 
architectures and systems.  

The specific criteria considered in this work are focused on two roots of the overall graph in 
Figure 1 – acceptance and comprehensiveness – plus all of the other criteria on which they depend, 
whether directly or indirectly. Acceptance is the primary root of the graph. It straightforwardly 
concerns whether the theory is accepted by the relevant scientific community. This is the ultimate 
criterion for any theory to have an impact moving forward, and it depends directly or indirectly on 
nearly all of the other criteria in the graph. Acceptance depends directly on four major criteria to 
be considered here: fidelity, lawfulness, usability, and beauty. These four criteria turn out to map 
roughly onto the semantics, syntax, pragmatics, and aesthetics of a theory, thus effectively treating 
theories as linguistic expressions that are to be evaluated via corresponding criteria. 

Not all of these criteria will be relevant to all theories or all theorists, depending on both the 
intended uses of the theories and the research strategies of the theorists, but all are potentially 
relevant to theories of whole minds. Comprehensiveness, although a more minor root, is included 
here because it is particularly relevant for theories of whole minds. It thus provides a fifth major 
criterion to be considered. The graph in Figure 1 also includes two additional minor roots – rigidity 
and surprisingness – but they are not considered further here. 

The following five sections discuss the corresponding criteria along with the comparative 
advantages of cognitive and generative theories with respect to them. Sometimes this extends to 
actual comparative evaluations but at other times it is limited to just the comparative feasibility of 
performing such evaluations. The results reveal a rich space of tradeoffs that go beyond simply how 
well systems of the two types may perform on benchmarks. The final section concludes with a 
summary of what has been learned. 

2.  Fidelity 

Fidelity (Figure 2) tends to be the dominant criterion across 
the sciences, concerning primarily a theory’s overall accuracy 
with respect to the phenomena of interest. Recursively, it also 
concerns the level of support not just for the theory as a whole 
but also for the individual pieces out of which it is constructed, 
via a criterion that can be termed groundedness. 

2.1  Architectural Fidelity 

Behavioral fidelity is difficult to assess for architectures in isolation, as without variable content 
there is typically little to no substantive behavior to compare against phenomena of interest, except 
for perhaps early-stage learning behavior. Still, partial assessments of accuracy or groundedness 
may be possible. One simple example from the physical sciences is Newton’s law of universal 
gravitation: F=G(m1×m2)/r2. The architecture – that is, the law’s fixed structure – here is simply the 
equation, with the variable content being the masses, the distance, and possibly the gravitational 
constant. Without values for any of these parameters it is still possible to accurately predict that 
larger masses and shorter distances yield increased gravitational force. 

Figure 2: Dependencies for Fidelity. 
Adapted from Rosenbloom (2026). 
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In the world of mental architectures – particularly for cognitive architectures – something close 
to an architectural evaluation may be possible when a minimum of variable content is required for 
behavior, such as when the phenomena of interest occur at very short time scales where it is largely 
the architecture that shows through. Evaluation of structural accuracy may also possible; for 
example, by comparing the components out of which transformers are built with structures in the 
human brain (e.g., Kozachkov, Kastanenka & Krotov, 2023), or by comparing the presence of 
procedural and declarative memories in cognitive architectures with the overall structure of human 
memory (e.g., Squire, 1987). A more detailed cognitive example can be found in the evaluation of 
the Common Model of Cognition – a community consensus concerning what must be in an 
architecture for humanlike cognition (Laird, Lebiere & Rosenbloom, 2017) – as a high-level 
architecture for the human brain (Stocco et al., 2021). With no variable content, and in fact without 
even an implementation of the model, predictions from the Common Model concerning 
connectivity among functional circuits in the human brain turned out to be more accurate than 
standard models from neuroscience. 

2.2  System Fidelity 

Behavioral fidelity becomes much easier to evaluate when applied to systems as a whole, as the 
behavior of such systems can be compared directly to that of either human subjects or abstract 
benchmarks. For cognitive architectures, this typically amounts to building models of behavior – 
or phenomena – based on the architecture plus limited amounts of variable content, whether in the 
form of procedural skills or declarative knowledge. When these models only tickle a small fraction 
of the architecture’s full capabilities – as is often the case – the comparisons may bear more directly 
on grounding than accuracy, but either way such work can contribute significantly to assessing 
fidelity (modulo concerns about rigidity – a criterial root alluded to in the introduction – that may 
arise from the flexibility of the variable content). 

Still, evaluating cognitive systems as a whole for accuracy across a broad range of types of 
behaviors, rather than as a collection of models developed and tested individually, has also proven 
challenging. There are exceptions, such as the development of cognitive supermodels that use a 
single system “to account for behavior across a range of diverse domains” (Salvucci, 2010); and 
work on interactive task acquisition, in which a single system learns how to perform a diversity of 
tasks through human instruction in the context of attempts at performing the tasks (Gluck & Laird, 
2018). But such assessments are difficult in general due to the lack of sufficient bodies of 
knowledge and skills. Architectural incompleteness (Section 4.2) and difficulties with interactions 
among the mechanisms actually embodied can also make this even more challenging. 

Generative systems tend not to suffer from these issues, as they are trained on vast amounts of 
data – yielding significant power in terms of the breadth of phenomena covered (Section 5) – and 
the training ensures that the interactions among their small number of basic mechanisms work well 
at least for achieving accuracy in predicting the next word. They thus can be evaluated for accuracy 
across quite broad ranges of desired behavior. However, given that they are trained explicitly just 
for this purpose – at least in their purest form – their accuracy can suffer greatly in this broader 
context, in the form of what are known as hallucinations. 

Some whole-mind theories have traditionally sacrificed some amount of fidelity for power; that 
is, the breadth of phenomena covered (Section 6). That has been seen, for example, in Soar (Newell, 
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1990) on the cognitive side in any of the many generative theories that hallucinate extensively. This 
may be justified simply by the application benefits of power or by the notion that if the ultimate 
goal is to achieve both power and fidelity it may be easier to incrementally improve fidelity once 
power has been maximized than to increase power once fidelity has been maximized. In other terms, 
as with abstraction planning (Sacerdoti, 1974), starting with an approximate global model before 
attempting to fill in the details may work better than attempting to extend one or more local 
optimizations. 

While not necessarily explicitly so, work on post-training in generative systems turns out to fit 
this abstraction-planning model quite well. Consider for example, Centaur (Binz et al., 2024), a 
form of cognitive supermodel that takes as its starting point a version of the Llama 3 large language 
model (LLM) (Grattafiori, 2024) and then specializes it via additional training over the results of 
160 psychological experiments. Such an approach can ameliorate the tradeoff between fidelity and 
power, although Centaur itself – as with all generative theories – still implicates other tradeoffs, 
with respect to criteria such as lawfulness (Section 3) and usability (Section 4). On the cognitive 
side, my own view of Soar has long been based on such an analogy. Yet, other cognitive theories 
– particularly ones like ACT-R (Anderson et al., 2004) that strongly prioritize cognitive science 
over AI or AGI – may subordinate power to fidelity from the very beginning. None of these 
theories, whether cognitive or generative, has however been terribly good at yielding single systems 
that simultaneously achieve high fidelity across a broad range of domains. 

2.3  Fidelity Summary 

Architectures of both types are difficult to evaluate for fidelity, although there are exceptions when 
the time scales are small (for cognitive architectures) or the comparison is of structural aspects. In 
contrast, systems of both types can typically be evaluated for fidelity. If there is a tradeoff of some 
amount of fidelity for power, this may be overcome via an analog of abstraction planning for 
particular domains, but it is not typical to see many such high-fidelity domains combined into a 
single system. Finally, systems with comparable power – as is typical of generative systems – are 
more amenable to comparison via standardized benchmarks.  

3.  Lawfulness 

Lawfulness (Figure 3) concerns the form of the theory – in 
terms of its coherence and the extent to which it is 
expressed in terms of principles – independent of its 
relationship to the phenomena of concern. These principles 
are typically assumed to take the form of propositions that 
individually exhibit generality. Lawfulness is sometimes 
considered definitional for a theory (e.g., “Theory,” 2024), 
but it can alternatively be viewed as comprising one or 
more dimensions along which theories may vary, and thus 
be applied as a means of evaluating them. In a sense, 
lawfulness can be seen as preferring neatness in the old neat 
versus scruffy debate in AI.  

Figure 3: Dependencies for Lawfulness. 
Adapted from Rosenbloom (2026). 
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3.1  Architectural Lawfulness 

Both cognitive and generative architectures typically rate high on coherence, given that they are 
the result of careful design processes. However, architectures that can be cast in either a 
mathematical or logical form may have an advantage over more procedurally defined architectures 
in being amenable to proofs of coherence. This spans all generative architectures and, in part or 
whole, some cognitive architectures. 

Principledness decomposes into propositionality and generality, where the latter refers to the 
generality of the individual parts of the theory rather than of the theory as a whole. Both types of 
architectures typically support generality. Where they most often differ is in propositionality. 
Generative architectures typically have a large advantage here. Even if they are actually 
implemented in a procedural fashion – that is, as code – the ability to express them in terms of a 
relatively small number of general mathematical equations yields a strong form of propositionality. 
Cognitive architectures can, however, approach this when they can be specified in logical or 
mathematical terms (e.g., Milnes et al., 1992; Cooper et al., 1996; Hutter, 2005). 

3.2  System Lawfulness 

Cognitive systems typically have a strong advantage over generative systems with respect to both 
aspects of lawfulness due to the symbolic nature of much of their variable content. Employing 
symbolic representations does not guarantee lawfulness, but it does provide a better basis for it than 
masses of parameter values. This is one of key shortfalls of Centaur alluded to in Section 2.2. 

Much of the variable content in cognitive architectures is also hand coded, which can encourage 
lawfulness while simultaneously reflecting lack of completeness (Section 4.2) in their learning 
ability. With generative architectures, only the links are typically hand coded, yielding a marginal 
amount of this “benefit.” Their parameter values are learned, and yield a body of variable content 
for which both aspects of lawfulness only exist, when they exist at all, as a side effect of optimizing 
according to the architecture’s learning criteria. This lack of lawfulness is likely a significant 
contribution to their production of hallucinations. Attempts at explaining generative systems (Zhao 
et al., 2024) can be seen as one approach to ameliorating their inherent lawlessness but, even when 
this possible, it at best provides a cognitive theory of the generative theory. 

3.3  Lawfulness Summary 

There is a peculiar tradeoff here with respect to these two classes of theories. There is a 
propositionality advantage of generative architectures over procedurally defined cognitive 
architectures that is part of their overall appeal with respect to cognitive architectures, but the 
relative lack of lawfulness in generative systems is a key factor in both their production of 
hallucinations and the difficulty in explaining them, and thus in the lack of trust that can result. 

4.  Usability 

Usability concerns the relationship of theories to those who use them. This is typically in terms of 
human users but also must include the computers that execute implementations of them. Almost 
tautologically an unusable theory is unuseful, and thus unlikely to achieve acceptance by the 
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scientific, or any other, community. As 
shown in Figure 4, usability directly 
depends on four subcriteria: 
accessibility, completeness, tractability, 
and clarity. In contrast to the approach 
taken in the other sections of this paper, 
of first covering architectures and then 
systems, due to the number of 
subcriteria here the structure is inverted 
to discuss both architectures and 
systems for each top-level subcriterion 
in a single subsection. 

4.1  Accessibility 

Accessibility concerns whether the theory is articulated in a medium accessible across individuals, 
rather than simply being in the mind of a single individual. Like lawfulness, it may be considered 
definitional, as in Newell’s (1990) use of explicitness, but it can also correspondingly be considered 
as an evaluation criterion that affects the usability of the theory by a community of users. Still, it 
will be assumed for all of the theories considered here, and thus not discussed further.  

4.2  Completeness 

Completeness concerns whether the theory includes all of the parts necessary to answer the 
questions it is to cover. If there are many pertinent questions, partial completeness can lead to the 
ability to answer some but not all of them. With respect to architectures, completeness focuses on 
mechanisms. Both cognitive and generative architectures typically have System 1 (Kahneman, 
2011) performance mechanisms – or what Newell (1990) referred to as knowledge search – 
effectively yielding knowledge-driven reactivity. But generative architectures notably lack, at least, 
online learning and the kinds of System 2 capabilities – or what Newell (1990) referred to as 
problem space search, but with a particular focus here on metacognitive and reflective abilities – 
found in many cognitive architectures. Since these gaps may lead to incorrect behavior rather than 
a failure to behave, they may be considered as issues with fidelity rather than completeness, but it 
seems cleanest to categorize them as architectural incompleteness rather than system infidelity. 

With respect to systems, they can be considered complete if they can answer the questions of 
interest. Here, generative theories shine due to the vast amounts of data on which they are trained. 
There is no reason in principle that cognitive architectures cannot achieve the same level of 
completeness – unless tractability (Section 4.3) prevents this – but they do not do so at present 
unless they incorporate something like a generative AI component (e.g., Romero et al., 2023). 
Completeness can rather trivially be achieved at the expense of power simply by restricting the 
questions of interest to those the system can actually answer, but that is rather a hollow approach. 

4.3  Tractability 

Figure 4: Dependencies for Usability. Adapted from 
Rosenbloom (2026). 
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Tractability for computational theories concerns whether it is feasible to compute answers to the 
questions of interest. This is not limited to the traditional computer science notion of a computation 
being subexponential, including on either side of this whether the problem simply doesn’t take too 
long to solve or is even computable. Tractability typically concerns interactions between the 
architecture and variable content, with distinct issues showing up for System 1 versus System 2 
aspects of the architecture. It can also be split orthogonally according to combinatoric versus real-
time tractability, with the former focusing on how time grows with the growth of the variable 
content and the latter focusing on whether processing completes in sufficient time for the task being 
pursued. 

As discussed in the previous section, pure generative architectures only implicate System 1. 
Neither their performance nor learning algorithms are combinatoric computationally, so the core 
question for both concerns real-time behavior. Given that large LLMs may learn trillions of 
parameters from petabytes of data, this is a significant issue that has led to much research on how 
to improve the situation (Wan et al., 2023); and on a smaller scale, it may have also contributed to 
the earlier years-long delays in the development and application of neural networks in general. Part 
of the current real-time issue may, of course, also reflect the need to learn from a combinatoric set 
of instances to counterbalance an inability to deal with such combinatorics internally. 

Cognitive architectures also implicate System 1 for both performance and learning. They 
typically do not, however, have the same kind of real-time issue for learning, as they acquire new 
knowledge incrementally and online. They can often also handle combinatoric possibilities 
internally via System 2. With respect to performance, they have typically dealt with much smaller 
memories; but, even so, work has been required on handling larger procedural (Minton, 1988; 
Doorenbos, 1993) and declarative (Douglass, Ball & Rodgers, 2009; Derbinsky, Laird & Smith, 
2010) memories. 

As implied above, cognitive architectures may introduce combinatorics not found in generative 
architectures. For System 1, this may for example result from individual elements of procedural 
memory becoming intractable to use (Tambe, Newell & Rosenbloom, 1990). For System 2, 
combinatorics typically shows up when cognitive architectures support problem space search 
(Newell et al., 1991; Laird, 2012; Rosenbloom, Demski & Ustun, 2016a). They typically attempt 
to cope with this via the addition of metalevel control knowledge, whether programmed or learned, 
that limits the size of the search (Laird, Newell & Rosenbloom, 1987). 

4.4  Clarity 

Clarity depends on a combination of three further criteria: unambiguity, minimality, and simplicity. 
Unambiguity concerns whether there is a clear single interpretation, versus multiple plausible ones. 
Minimality concerns the size of the theory, assuming smaller is better, in rough alignment with 
Occam’s razor. As with principledness, minimality also depends on the generality of the elements 
of the theory (Section 3), given that smaller theories for the same body of phenomena must 
inherently be built from more general parts. Simplicity concerns how easy the theory is to interpret, 
independent of its size or degree of ambiguity. For example, complex mathematical expressions 
may be small and unambiguous while sacrificing simplicity for some users in this sense. 
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Architectural designs on paper, such as The Society of Mind (Minsky, 1986) and the Common 
Model of Cognition (Laird, Lebiere & Rosenbloom, 2017), may easily introduce issues of 
ambiguity. One of the reasons that implementation of architectures is so important in general is that 
it provides one of the major means of ensuring the absence of ambiguity. Thus, implemented 
architectures of all types are typically free of this form of ambiguity. 

With respect to minimality, developers of architectures may hold a physics mindset that 
particularly emphasizes it in the architecture (e.g., Hutter, 2005; Rosenbloom, Demski & Ustun, 
2016a; Vaswani et al., 2017; Silver et al., 2021); or a biological mindset that is much more 
comfortable with an efflorescence of mechanisms (e.g., Goertzel, Pennachin & Geisweiller, 2014); 
or a more neutral mindset that while preferring minimality is more amenable to trading it off for 
other considerations (e.g., Anderson et al., 2004; Laird, 2012). Generative architectures are 
typically more minimal than cognitive architectures, but it is unclear how much of this is due to 
their relative incompleteness with respect to cognitive architectures. 

With respect to simplicity, generative architectures are simpler than cognitive architectures, 
with the former typically amounting to sets of equations that should be clear to anyone with the 
appropriate mathematical background and the latter typically involving either a complex 
description in natural language or a complex body of code. For discriminative neural networks, the 
former has enabled even high school students to contribute papers at leading conferences (Lee, 
2025). Still, the relative simplicity of generative architectures may at least part be due to their 
greater degree of incompleteness. 

When it comes to systems, generative architectures can suffer significantly compared to 
cognitive architectures in terms of both unambiguity and simplicity. This is the other key shortfall 
of Centaur alluded to in Section 2.2. Minimality is less clear without a better understanding of the 
compression yielded by backpropagation in generative systems versus what is provided by general 
symbolic structures.  

4.5  Usability Summary 

Generative architectures are typically more tractable, simpler, and more minimal than cognitive 
architectures whereas cognitive architectures are typically more complete. Cognitive systems are 
typically more tractable, simpler, and more unambiguous than generative systems, whereas 
generative systems are typically more complete than cognitive ones. However, the story on 
tractability is really much messier than these comparisons would seem to imply. In particular, 
further completing generative architectures and the variable content in cognitive systems could 
change these assessments dramatically. 

5.  Beauty 

Beauty is inherently aesthetic, but it is also assumed to have heuristic value, at least in parts of 
physics (Wilczek, 2015), in leading towards theories that are more likely to be accurate in modeling 
natural phenomena. As shown in Figure 5, it depends on a combination of clarity (Section 4.4) and 
exuberance. Exuberance amounts to a relationship between minimality (Section 4.4) and power, or 
in every-day terms how much bang for the buck the theory yields. 
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As mentioned in Section 2.2, power concerns the breadth 
of phenomena covered by the theory. It is related to 
completeness (Section 4.2), but rather than focusing on (lack 
of) gaps with respect to questions to be answered it focuses 
on the breadth of what is possible. 

In the study of the mind this would typically be viewed 
as generality rather than power, but power is a common term 
more broadly in science, and generality has already been used 
in a different way in the context of principledness – 
concerning the individual elements of the theory rather than 
the theory as a whole. No matter what name it goes by, in the 
form of comprehensiveness (Section 6) power is largely the 
raison d’être of theories of whole minds. Thus, irrespective 
of whether there is a concern for beauty, or for its direct 
dependence on clarity and exuberance, or even for their joint dependence on minimality, this aspect 
of beauty is critical. 

Because of the dependence of exuberance on minimality, it too can be seen to align with 
Occam’s razor – essentially, preferring the smallest theory for a given amount of power. 
Exuberance also can be seen to align with approaches concerned with the level of compression 
embodied by a theory (Wolff, 2013). Other particular notions, such as the free energy principle 
(Friston, 2010), or that reward is enough (Silver et al., 2021), also clearly embrace exuberance. 

In being partly based on clarity, beauty’s definition here may overlap with how it is used in the 
arts, but it can also diverge in significant ways – ambiguity, size, and complexity can all 
conceivably play significant roles in the beauty of particular artistic creations. Exuberance is also 
a term that can be relevant in the arts, as for example found in the baroque period that spanned parts 
of the 17th and 18th centuries. But the meaning here specifically reflects how much phenomena – 
that is, how much power – can be spanned by how little theory. Power too is a term found in the 
arts, but there it instead concerns the impact on the audience, or “user.” 

5.1  Architectural Beauty 

Starting at the bottom of Figure 5, with power, the most natural measure of power for an architecture 
concerns the range of intelligent capabilities – such as reasoning, problem solving, planning, 
learning, and natural language processing – it can exhibit. Here, cognitive architectures have a 
significant edge over generative architectures, being typically richer in, at least, memory structures, 
learning mechanisms, and reasoning and metareasoning capabilities. But only time will tell whether 
this is simply a sign of the immaturity of generative architectures versus a more inherent limitation. 

As discussed in Section 4.4, minimality is more typical of generative than of cognitive 
architectures, although some cognitive architectures do strive for this. In combination with the just 
mentioned concern about the lack of power of existing generative architectures, this yields only a 
qualified advantage with respect to minimality for generative architectures. 

Combining power and minimality, to yield exuberance, shifts the focus to how many mental 
capabilities can result from combinations of how few architectural mechanisms. This is not a typical 
concern in cognitive architectures, although it has been important, for example, in both Sigma 

Figure 5: Dependencies for Beauty. 
Dotted outlines are for criteria whose 
dependencies are shown in Figure 4. 
Reproduced from Rosenbloom (2026). 
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(Rosenbloom, Demski, & Ustun, 2016a) and the early versions of Soar (Laird, Newell & 
Rosenbloom, 1987). This is quite explicit in Sigma, with its desideratum of functional elegance. 
Typically, such exuberance actually requires combining architectural mechanisms plus at least 
small amounts of variable content – as illustrated for example in the early work on a universal weak 
method in Soar (Laird & Newell, 1983) – rather than solely being due to combinations of 
architectural mechanisms. Still, most of the action is due to the architectural mechanisms. 

With the development of transformers, the notion that attention is all you need (Vaswani et al., 
2017) is an exuberant claim that is now central to generative architectures. Experience with 
generative systems has revealed a range of intelligent capabilities apparently exhibited by them, 
yet how much of this should be allocated to architectural rather than system exuberance – that is to 
large quantities of variable content – remains to be seen, with only a murky answer thus possible 
at present as to which class of architectures is more exuberant. 

Moving further up the hierarchy, to beauty, the most beautiful architectures are both clear and 
exuberant, favoring those that are expressed mathematically or logically in a manner that enables 
much to come out of little. Such theories can be found, for example, in physics, but it remains an 
open question as to whether such an idealization is possible for minds, as well as which approaches 
might ultimately yield the most beautiful theories. At present, cognitive architectures tend to exhibit 
power at the expense of clarity whereas generative architectures tend to exhibit clarity at the 
expense of power. 

One class of approaches that spans paradigms and yet may be particularly promising for beauty 
combines some form of induction with reinforcement learning, whether in the form of an AGI 
architecture such as Universal AI (Hutter, 2005), or a discriminative neural network architecture 
such as deep reinforcement learning (Francois-Lavet et al., 2018), or a generative architecture such 
as large language models with reinforcement learning from human feedback (Ziegler et al., 2019). 
These all start with high levels of clarity but must further establish their exuberance. Sigma’s 
graphical architecture, which implements its cognitive architecture via an extended form of factor 
graphs (Kschischang, Frey & Loeliger, 2001), combines significant power – including directly 
supporting induction and indirectly supporting reinforcement learning when augmented with 
appropriate variable content – with an approximation of the mathematical ideal for clarity 
(Rosenbloom, Demski & Ustun, 2016b). 

5.2  System Beauty 

When the focus is shifted to entire systems, it makes sense to measure power in terms of the range 
of problems, or whole problem domains, over which intelligent behavior can be exhibited. 
Although cognitive systems have been applied across a wide variety of domains, the breadth of 
training available to generative systems implies that, at least at present, any single generative 
system has a huge power advantage over any individual cognitive system. In the other direction, 
although there is no clear advantage with respect to minimality (Section 4.4), there is a clear 
advantage for cognitive systems in terms of clarity (Section 4.4). All systems thus currently lack 
either power or clarity and therefore do not come close to overall beauty. Still, cognitive systems 
at least provide a possible path, based on extending their variable content, whereas even explainable 
generative systems would still fall short of overall beauty. 

75



P. S. ROSENBLOOM 

12 

5.3  Beauty Summary 

There is a particularly complex combination of tradeoffs between cognitive and generative theories 
with respect to beauty. Cognitive architectures typically yield more power whereas generative 
architectures typically yield more clarity. Yet, conversely, cognitive systems typically yield more 
clarity whereas generative systems typically yield more power. Aa result, neither class of theories 
can currently be said to yield either beautiful architectures or systems, although the ultimate 
possibility of either cannot yet be ruled out. 

6.  Comprehensiveness 

Comprehensiveness concerns whether the range of phenomena 
covered by a theory is exhaustive with respect to some natural 
maximal domain. When physicists talk about a “Theory of 
Everything” (2024), they have in mind a comprehensive theory of 
the universe. More on point, unified theories of cognition (Newell, 
1990) and AGI (Goertzel, 2014) strive for comprehensive theories of 
human or artificial intelligence. Comprehensive mental architectures 
contain all of the mechanisms required to yield general intelligence, 
whether the goal is human(like) or artificial intelligence. Comprehensive systems combine 
comprehensive architectures with all of the variable content required to perform intelligently 
across, at least, the domains of human performance. As shown in Figure 6, comprehensiveness 
depends on power, but it also depends on this notion of what the maximal domain is that isn’t itself 
considered a criterion here. 

6.1  Architectural Comprehensiveness 

Both cognitive and generative architectures fall short with respect to comprehensiveness, although 
in different ways. As mentioned in Section 4.2, generative architectures fall significantly short of 
what is required, particularly with respect to such things as online learning and System 2 
capabilities. However, the inclusion of reinforcement learning from human feedback (Ziegler et al., 
2019) or chain-of-thought prompting (Wei et al., 2022) does add limited forms of the latter. More 
ambitious attempts to build broader architectures around generative architectures are also in 
progress (e.g., Park et al., 2023; Sumers et al., 2023). 

Cognitive architectures are typically more comprehensive in this sense than generative 
architectures, including significant System 1 and 2 capabilities. However, they still do fall short, 
with each architecture tending to fall short in its own unique way. This is a key reason, at least in 
my view, why there has been essentially no success over the years in developing useful benchmarks 
for progress with cognitive architectures. 

6.2  System Comprehensiveness 

Generative systems tend to be the most comprehensive due to the vast amounts and varieties of 
data from which they learn. This is also likely why benchmarks have found a role in evaluating 

Figure 6: Dependency for 
Comprehensiveness. Adapted 
from Rosenbloom (2026). 
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such systems (e.g., Evidently AI Team, 2024), as it can be assumed that they are all comprehensive 
enough to be compared with each other via the same benchmarks. 

Cognitive systems that leverage knowledge graphs (Rytting, 2000; Forbus & Hinrichs, 2006; 
Douglass, Ball & Rodgers, 2009) reach partway towards this, with ones that incorporate generative 
AI’s as modules (e.g., Romero et al., 2023) approaching even closer. Otherwise, cognitive systems 
tend actually to only span limited classes of tasks due to the minimal amount of variable content, 
in the form of knowledge and skills, that they contain. 

6.3  Comprehensiveness Summary 

For comprehensiveness the tradeoff between cognitive and generative architectures is rather 
straightforward at this time, with cognitive architectures being more comprehensive than generative 
architectures but generative systems being more comprehensive than cognitive systems. Combining 
the two approaches yields one potential path towards completeness at both levels. 

7.  Conclusion 

Considering theory evaluation in terms of fidelity, lawfulness, usability, beauty, and 
comprehensiveness enables a broader, albeit qualitative, understanding of the strengths, 
weaknesses, and tradeoffs between cognitive and generative theories. 

Bare architectures of any sort can be tough to evaluate for fidelity, although some forms of 
evaluation are possible. Systems of either type can be evaluated, albeit with generative ones being 
better at enabling the use of shared benchmarks. Still, the drive for power – and even for 
comprehensiveness – can lead to sacrificing some amount of fidelity, at least in the short term. 

With respect to both lawfulness and usability, generative theories have the overall advantage 
with respect to the architectures themselves, whereas cognitive theories have the advantage with 
respect to the variable content processed by the architectures. With respect to beauty, there is a 
complex set of tradeoffs between the two types of theories, with an inversion of criteria occurring 
when comparing architectures versus systems. Overall, neither type of theory is able to yield truly 
beautiful systems at this point. With respect to comprehensiveness, there is currently a simple 
tradeoff, with cognitive architectures and generative systems each having the advantage. 

Future work on such comparative evaluations is possible along multiple paths, including: (1) 
refining the set of criteria; (2) applying the full set of criteria in Figure 1 rather than just a subset of 
them; (3) extending the comparisons from qualitative to quantitative; (4) broadening the classes of 
theories considered to include whole brain theories and narrower theories that don’t strive to cover 
whole minds or brains; and (5) comparing subclasses of, and even individual, theories. Future work 
also makes sense in the direction of developing theories that perform well across this broad range 
of criteria, whether by integrating across these two classes of theories or via other approaches. 
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