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Abstract

We present online learning of Hierarchical Task Network (HTN) methods in the context of inte-
grated HTN planning and LLM-based chatbots. Methods indicate when and how to decompose
tasks into subtasks. Our method learner is built on top of the ChatHTN planner. ChatHTN queries
ChatGPT to generate a decomposition of a task into primitive tasks when no applicable method for
the task is available. In this work, we extend ChatHTN. Namely, when ChatGPT generates a task
decomposition, ChatHTN learns from it, akin to memoization. However, unlike memoization, it
learns a generalized method that applies not only to the specific instance encountered, but to other
instances of the same task.. We conduct experiments on two domains and demonstrate that our
online learning procedure reduces the number of calls to ChatGPT while solving at least as many
problems, and in some cases, even more.

1. Introduction

Tasks in Hierarchical Task Networks (HTNs) represent activities to be performed, such as searching
and rescuing survivors in an area affected by a natural disaster. HTN planners generate solution
plans (i.e., sequences of actions) by recursively decomposing these complex tasks into simpler tasks.
For instance, they may decompose the search-and-rescue task into subtasks that search for and
rescue survivors in specific locations within the disaster area. A plan is formed as so-called primitive
tasks are generated. Primitive tasks are atomic tasks achieved by an associated action. An example
of such a primitive task is unloading a survivor from a drone into a safe haven.

HTN planning is a frequently studied topic because of its applications in real-world domains
(e.g., (Nau et al., 2005)), including military planning (Donaldson, 2014), game Al (Smith et al.,
1998; Verweij, 2007), and UAV control (Cardoso & Bordini, 2017). HTN’s stratified representa-
tion of tasks of varied complexity has also been exploited in cognitive architectures (Laird, 2019;
Langley & Choi, 2006). This is a natural match, given that stratified representations mimic how
humans learn: starting with simpler tasks and progressively learning more sophisticated tasks (Choi
& Langley, 2005).

Despite these successes, a major stumbling block in the adoption of HTN planning is the need
to supply a complete and correct set of methods for a wide range of tasks. A method indicates when
and how to decompose a task. In recent work (Munoz-Avila et al., 2025), we reported on ChatHTN,
an HTN planner that queries ChatGPT to generate a decomposition of the task into primitive tasks
when no applicable method is available. Then, HTN planning proceeds using the newly generated

Thiswork islicensed under a Creative Commons Attribution International 4.0 License.


https://creativecommons.org/licenses/by/4.0/

Y. XU, H. MUNOZ-AVILA

method and queries ChatGPT again only when needed. ChatHTN is provably sound: any solution
it generates is guaranteed to correctly solve the given problem.

In this work, we extend ChatHTN. Namely, when ChatGPT generates a task decomposition,
ChatHTN learns from it, akin to memoization (Michie, 1968). But unlike memoization, it learns a
generalized method that applies not only to the specific instance encountered, but to many others.
Furthermore, the methods are learned in such a way that ChatHTN’s soundness is preserved. Our
aim is to reduce the number of calls to ChatGPT. Reducing calls to ChatGPT (or any other LLM-
based chatbot) is a highly desirable property due to both monetary costs and response time: a
chatbot query takes several seconds, while method-based decomposition completes in a few hundred
nanoseconds.

The following are the contributions of this work:

1. We present the online HTN learning problem with chatbots.

2. We introduce a method learning procedure that preserves the soundness guarantees of ChatHTN
and guarantee the correctness of the learned methods themselves.

3. We present our empirical evaluation showing that that method learning reduces the calls to
ChatGPT while solving at least as many problems, and in some cases, even more. Our exper-
iments span two benchmark domains from the HTN planning literature.

The rest of the paper is structured as follows. First, we present a sample scenario illustrating the
advantages of online learning of methods for ChatHTN. Next, we describe the ChatHTN planner.
Afterwards, we present our procedure for learning methods and introduce the notion of termination
methods. We then discuss the empirical evaluation. Finally, we review related work and make
concluding remarks.

2. Example Scenario

To illustrate both ChatHTN and the need for online method learning, we present an example based
on the search-and-rescue domain (Cottam & Shadbolt, 1998). In this domain, a catastrophe has
occurred in a specific area. A safe haven is established with medical services, food, shelter, etc. The
planning task is to search for and rescue survivors, who need to be found and relocated to the safe
haven.

Figure 1 shows the top-level task searchANDrescue(Alpha), where Alpha is the catastrophe area.
This task is decomposed into three subtasks: /scanArea(Zulu), checkSurvivors(Zulu), searchAN-
Drescue(area), where Zulu is a location in the area, using the searchANDrescueM?2 method shown
in Table 1. Details of these methods will be presented later. The exclamation mark in front of
a task indicates a primitive task accomplished by operators. Thus, checkSurvivors(Zulu) must be
decomposed. This task is decomposed into the subtasks: rescueSurvivor(Maria,Zulu), checkSur-
vivors(Zulu).

1. Setting up the domains for this work and running the experiments incurred costs exceeding US $300. In our exper-
iments, methods have around 15 applicability conditions and subtasks. We ran these experiments on a Mac with an
M1 processor.
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searchANDrescue (Alpha)
!'scanArea (Zulu)
checkSurvivors (Zulu)
rescueSurvivor (Maria, Zulu) <<<<
checkSurvivors (Zulu)
searchANDrescue (Alpha)

Figure 1: Initial decomposition in the search-and-rescue domain. ChatHTN does not have a method
decomposing the task rescueSurvivor(Maria,Zulu) - annotated with "<<<<".

Suppose there is no method applicable for the rescueSurvivor(Maria,Zulu) task. To address this,
ChatHTN employs a two-step prompt chaining strategy to query ChatGPT for a task decomposition,
first with the task and current state, and then with the same information augmented by ChatGPT’s
initial response; see Munoz-Avila et al. (2025) for prompt details. Suppose that ChatGPT generates
the decomposition for the rescueSurvivor(Maria,Zulu) task shown in Figure 2. ChatHTN then con-
tinues decomposing checkSurvivors(Zulu) into rescueSurvivor(John,Zulu), checkSurvivors(Zulu).
Here, ChatHTN must again prompt ChatGPT to decompose rescueSurvivor(John,Zulu).

In contrast, our system learns from the decomposition generated for rescueSurvivor(Maria, Zulu)
and produces the method rescueSurvivorM?2 shown in the table. It then applies this method to
rescueSurvivor(John,Zulu) to decompose it as shown in Figure 2. Notably, this occurs despite the
decomposition being learned from a different instance of the same task and in a different state.

Name searchANDrescueM?2 | checkSurvivorsM?2 rescueSurvivorM2
Arguments 7area MNoc ?survivor, ?oc
area(?area),
1 ion(?1 .
ocation(?loc), ) isDrone(?drone),
. atLoc(?loc,?area), person(?survivor),
Preconditions . safeHaven(?SH),
weather(?loc,?clear), at(?survivor,?loc)
atDrone(?drone,?loc)
not(scanned(?loc)),
not(safeZone(?loc))
!pickUpSurvivor(?drone,
. . . ? ivor,?loc),
IscanLocation(?loc), rescueSurvivor(?survivor, 1 (S};l(;:(l);(:qloi@
Subtasks checkSurvivors(?loc), ?Noc), '}‘;S.H) T
searchAndrescue(?area) | checkSurvivors(?loc) !ur;loa d’(? drone. 2survivor.,
7SH)

Table 1: Example HTN methods with their arguments, preconditions, and subtasks. Question marks
prefixes denote variables.
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searchANDrescue (Alpha)
!'scanArea (Zulu)
checkSurvivors (Zulu)
rescueSurvivor (Maria, Zulu)
'fly (Drone0l, safeHaven, Zulu)
'pickUpSurvivor (Drone0l,Maria, Zulu)
'fly (Drone0l, Zulu, safeHaven)
!dropSurvivor (Drone0l,Maria, SafeHeaven)
checkSurvivors (Zulu)
rescueSurvivor (John, Zulu) <<LL<L
'fly (Drone(Ol, safeHaven, Zulu)
!'pickUpSurvivor (Drone0l, John, Zulu)
'fly (Drone0l, Zulu, safeHaven)
!dropSurvivor (Drone0l, John, SafeHeaven)
checkSurvivors (Zulu)
!'doNothing ()
searchANDrescue (Alpha)

Figure 2: Refined decomposition in the search-and-rescue domain. ChatHTN must query for a
decomposition of the task rescueSurvivor(John,Zulu). Our system learns a method from the decom-
position provided by ChatGPT for rescueSurvivor(Maria,Zulu), thereby avoiding a costly call to
ChatGPT.

3. HTN Planning

An HTN planning problem is a 4-tuple (task list, state, methods, operators). Lett = [t,t1,. .. t,]
be a task list and s be the current state. HTN planning transforms £ and s by recursively interleaving
two steps, depending on whether ¢ is compound or primitive. During this process, a plan 7 is
generated, consisting of a list of primitive tasks. Initially, 7 is an empty task list.

A method is a triple: (task, preconditions, subtasks), as exemplified in the three methods of
Table 1. Given a state s (a collection of grounded atoms) and a compound task ¢, a method m =
(tim, Pm, St is applicable to (s, t) if there is a variable substitution 6 such that ¢,,,0 = ¢ and p,,0
holds in s. 2 That is, if p = not(p') is a negative precondition in p,,, then p'6 ¢ s, and if p is a
non-negative precondition in p,,, then pf € s.

If ¢ is compound. If a method m = (t,,, P, Stm) is applicable to (s, ) with a substitution 6,
then the task list ¢ is transformed into ¢ = st,,0 - [t1,... ,tn].3 In such a case, we say that st,,,0
is a decomposition for ¢. The state s remains unchanged when decomposing compound tasks. The
current plan 7 remains unchanged as well.

2. A variable substitution 6 is a mapping from variables to terms, such as 6 = [(?z,1), (?y,a)]. Applying 6 to an
atom a, written ad, substitutes any occurrence of the variable for the term. For instance, if a = foo(?x, 7y), then
af = foo(l,a)

3. The symbol - denotes the concatenation of two lists: [t1, ..., tn] - [t1, - tm] = [t1, -y tn, t1, - - s Em]-
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An operator is a 4-tuple (task, preconditions, add-list, delete-list), where the task is a primitive
task, and preconditions have the same form as methods’ preconditions, and the add-list and delete-
list are lists of atoms. Given a state s and a primitive task ¢, an operator o = (t,, po, add,, del,) is
applicable to (s, t) if there is a variable substitution 6 such that ¢,0 = ¢ and p,6 holds in s (same
definition as for methods).

If ¢ is primitive. If an operator o = (t,, p,, add,, del,) is applicable to (s,t) with a substitution
6, then the task list is transformed into [t1, . .., t,]. The state s is transformed into o(s) as follows:
o(s) = (s\ del,0) U add,f. This is referred to as applying o to s. The plan 7 is transformed into
7 - [t]. That is, the operator associated with ¢ is applied on s and ¢ is appended to the end of the
current plan.

The process continues until the task list ¢ is empty, in which case the current plan 7 is returned.

For instance, in Figure 2, the plan consists of all primitive tasks in the order generated as shown in
Figure 3.

A plan for searchAndRescue (Alpha):

Primitive tasks: [!scanArea(Zulu), !fly(Drone0Ol,safeHaven,Zulu),
!pickUpSurvivor (DroneOl,Maria, Zulu), !fly(Drone0Ol,Zulu,safeHaven),
!dropSurvivor (Drone0Ol,Maria, SafeHeaven), !fly(Drone(Ol,safeHaven,
Zulu), !pickUpSurvivor (Drone0Ol, John, Zulu), !fly(Drone0Ol,Zulu,
safeHaven), !dropSurvivor (Drone(0Ol,John, SafeHeaven), !doNothing(),

]

Figure 3: Plan for the hierarchy in Figure 2 decomposing searchAndRescue(Alpha).

4. ChatHTN: Integrating ChatGPT and HTN Planning

ChatHTN performs standard HTN planning as in the SHOP system (Nau et al., 1999). However,
during the HTN planning process, if the current task listis £ = [t,¢1, . . ., t,] and s is the current state
and no applicable method exists for (s,t), then ChatHTN prompts ChatGPT for a decomposition
by passing relevant information. However, in standard HTN planning, a compound task’s semantics
are defined by the methods that decompose it. This poses a problem since we need to specify to
ChatGPT the precise meaning of what needs to be accomplished. To address this issue, we adopted
the notion of annotated tasks from (Hogg et al., 2008). An annotated task is a 3-tuple: (task,
preconditions, effects). Figure 4 shows the annotated task for rescueSurvivor.

Annotated task:

task: rescueSurvivor (?survivor, ?loc)
preconditions: safeHaven (?SH), at(?survivor, ?loc)
effects: (at(?survivor, ?SH))

Figure 4: Annotated task specification for rescueSurvivor(?survivor, ?loc).
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Annotated tasks give clear semantics to ChatGPT about what the task is trying to accomplish.
In addition to the annotated task, ChatHTN also passes to ChatGPT the list of primitive tasks and
their associated operators, as well as the current state s.

ChatGPT will, with some frequency, return an incorrect sequence of primitive tasks, #, when de-
composing t. There are two cases here. First, ¢ cannot be executed on state s because an associated
operator in ¢ is not applicable in the state. This is handled directly by the HTN planning process by
backtracking. The second case is more problematic: t' can be executed on state s, but the resulting
state s’ does not satisfy the conditions on t’s effects. To address this issue, when decomposing a
compound task ¢ in a task list £ = [t,1,...,t,] with a decomposition t (ie., generated either by
using a method or by querying ChatGPT), ChatHTN adds a verifier task t,.., so the resulting task
listis: ¢ - [tyer] - [t1, . - - s tn).

A verifier task tye, of a compound task (¢, p, add) is a primitive task whose associated operator
has as preconditions add, and neither an add-list nor a delete-list. Its purpose is to check that
the effects of ¢ are valid in the state after the HTN planning process removes t’s subtasks ¢ and,
recursively, all of its subtasks from the task list. As a result, ChatHTN is sound. Informally, the
tasks in ¢ are satisfied by the plan generated by ChatHTN when called with (s, ). For a formal
definition, please see (Munoz-Avila et al., 2025).

5. Online Learning HTN methods

As explained before, when ChatGPT returns a task list ¢ decomposing a compound task ¢, with
current task list [¢,¢1,...t,] and current state s, the task list is modified as follows: ¢ - [tyer] -
[t1,. .. tn]. .

To better explain the method learning process, let ' = [t],...,t,.] (and hence, the task list is
[, tuers t1, - - -, t0]). Let o) be the associated operator for primitive task ¢;. Let [so, S1, . . . , Sm]
be the sequence of states generated, i.e., so = s, s1 = 0{(s0), and so forth until s, = o}, ($m—1)

and s, = s’. The new state s’ generated after applying in this way [0}, ..., 0},] to s is denoted as
/

apply([oll, ) Om]7 3) =

Assuming all the operators o} are applicable in their corresponding states s;_1, ChatHTN then
checks t,¢, on s’. That is, it checks if the preconditions of ¢, are valid in s’. In doing so, it checks
that the effects, ef f;, of the annotated task for ¢ are valid in s’.

Online learning of the method occurs immediately after this verification succeeds: a new method
is learned (¢1, pt, t 1). Given an atom @ with no variables, such as at(Maria, Zulu), a lifted atom,
denoted by aT, is the atom with all constants replaced by variables. For instance, at(Maria, Zulu)T
= at(?Maria,?Zulu). Thus, both ¢ and all atoms in ¢’s decomposition, t/, are lifted in the learned
method.

Finally, p is the set of preconditions generated by performing goal regression (Mitchell et al.,

1986) from ef f; on the sequence (0}, ...,0),), written Reg([o},...,ol,],ef ft), which computes

r¥m
the minimum conditions needed in any state s” for the sequence to be applicable. This is pre-
cisely what we need in order to safely lift the variables and apply the task decomposition in other

states: to ensure that when the preconditions of the learned method are applicable in any state s”,
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after ChatHTN processes the subtasks [t], ..., ], the effects of ¢ are valid in the resulting state,
/

apply([o), ..., 0], s”). Regression, Reg([o}, ..., o], ef ft), is defined as follows:

(9i —add;) Upre;, ifi>1andi < m,and add;, pre; are the add-list
and preconditions when applying o/ (s;_1),
and g; = Reg([0j,,...,0},],9)

efft, ifi=m

Reg([0},...,0}],9) =

Once p = Reg([0}, ..., 0l,],ef fi) is generated, we lift the atoms in p.*

In addition to the methods learned as described, we also provide the termination methods.
Given an annotated task, (z, p, effects), the termination method, m;, for ¢ is defined as m; =
(t, effects, (IdoNothing())). That is, the method has as preconditions the annotated task’s effects
and a single subtask: the primitive task doNothing. The associated operator for this subtask has
no preconditions (so it is always applicable) and has no effects, so it doesn’t change the state. Its
use is to stop recursive calls for ¢ from other methods, in states where the desired effects of the
task are satisfied. For instance, in Figure 2, the last checkSurvivors(Zulu) task is decomposed into
!doNothing(), because there are no more survivors in Zulu. Figure 5 shows the termination method
for checkSurvivors(?loc).

Termination method:

task: checkSurvivors(?loc)
preconditions: not (at (?survivor, ?1oc))
subtask: doNothing/()

Figure 5: termination method for checkSurvivors(?loc).

6. Experiments

In our experiments we are using GPT-4-turbo, We selected GPT-4-turbo for its demonstrated per-
formance on symbolic and multi-step reasoning tasks, and for its cost-efficiency, which enabled
extensive experimentation. The model’s 128K context window was particularly useful for repre-
senting hierarchical task networks and long planning traces.

6.1 Domains

Logistics Transportation Domain The Logistics Transportation domain is a benchmark in HTN
planning that simulates the process of transporting packages using different vehicles (Veloso &
Carbonell, 1993). Trucks can move between different locations within the same city, while airplanes
can travel between different cities, but only between airports. The goal is to transfer a package from
source location to destination location.

4. We are assuming that the preconditions and effects of the operators are all lifted. If some are not lifted, the regression
definition must be changed to account the non-lifted arguments in preconditions or effects, so these arguments are
also not lifted in p7.
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Search and Rescue Domain The Search and Rescue domain is a benchmark in HTN planning
that simulates the process of locating and rescuing victims in a hazardous environment. A drone
can fly to different locations, where it can scan the area and rescue one survivor at a time. The goal
is to survey all locations and rescue all survivors.

6.2 Performance Measure

We use the following two metrics to measure the performance and compare between the planner
with and without method learner: (1) the number of calls to GPT; (2) the percentage of problems
solved.

6.3 Experimental Settings

Common settings We handcrafted the HTN knowledge base. This knowledge base consists of
operators, methods, and annotated tasks such that a correct solution can be generated for any given
solvable problem. To create a testbed, we randomly generated 10 problems. To simulate an incom-
plete domain, we removed one method at a time and attempted to solve the 10 problems. Thus, some
of the problems might not be solvable because of the absence of the method. After each instance —
in which a problem is given, regardless of whether ChatHTN succeeds in finding a solution or not,
the methods learned during that instance are deleted. For each problem and each method removed,
we run the problem 3 times and compute the average of the two performance measures. We repeated
this for every method in the domain. Therefore, we tested our learning procedure both when meth-
ods are missing for low-level tasks in the hierarchy such as rescueSurvivor, as well as methods for
high-level tasks such as searchAndRescue. The latter may require ChatGPT to generate a solution
for the whole problem. We tested our HTN learning process in two domains, which we describe
next.

Logistics Transportation Domain. The logistics transportation domain’s main task is to relocate
a package. If the package is to be relocated within the same city as its starting location, a truck can be
used to relocate the packages. However, if the pacdkage needs to be relocated between locations in
different cities, a combination of truck transport and airplane transport is needed. Trucks can only
transport packages between locations in the same city whereas airplanes can transport packages
between cities but they only fly from and to airports.

The following is a short description of the methods in this domain. TM1 is the termination
method for truck transportation. TM2 transfers a package from a source location to a target loca-
tion if a truck and the package are in the same location. TM3 transfers a package from a source
location to a target location when a truck and the package are in the different locations. AMI1 is the
termination method for airplane transportation. AM2 transfers a package from a source location to a
target location if an airplane and the package are in the same airport. AM3 transfers a package from
a source location to a target location when an airplane and the package are in the different locations.
TPM1 transfers a package within one city. TMP2 transfers a package between two cities.

The Logistics Transportation domain is structured around a network of three cities, each con-
taining two post offices and an airport. There are three trucks, one in each city, and one airplane.
A problem instance is defined by a task list of 5 tasks, where each task involves moving a package
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from a source location to a destination location. When a planning succeeds, plans have a variety of
lengths with as few as in the low 50s and as many as in the high 70s.

Search and Rescue Domain. In the Search and Rescue domain, the environment consists of a
set of distinct locations categorized as either unsafe zones or a single safe zone serving as the
rescue destination. A drone is capable of flying between any two locations, scanning an area to
detect survivors, and transporting one survivor at a time; however, it must scan a location before
performing any subsequent actions like checking for or rescuing them. The initial state contains one
drone and five survivors randomly distributed among the unsafe zones. A problem consists of single
searchAndRescue tasks, which requires rescuing all five survivors. When a planning succeeds, plans
have a variety of lengths with as few as in the low 21 and as many as in the high 47.

The following is a short description of the methods in this domain. SCAN1 is the termination
method for scanning one location. SCAN2 scans a location if a drone is at that location. SCAN3
scans a location when a drone is at a different location. CS1 is the termination method for checking
survivors at one location. CS2 checks survivors at one location and rescues them. RS1 rescues a
survivor at a location if a drone is at the same location. RS2 rescues a survivor at a location when
a drone is at a different location. SARI1 is the termination method for search and rescue. SAR2
searches and rescues all the survivors.

6.4 Results

Figure 6 compares of the average number of calls made to ChatGPT to solve the 10 randomly
generated problems for the Logistics Transportation and Figure 7 shows the results for the Search
and Rescue domain. The red and blue bars indicate the performance of the planner without and with
the method learner, respectively.

The main observation from these results is that employing the method learner consistently leads
to a reduction in the number of calls to ChatGPT. This improvement stems from the learner’s ability
to generalize from each interaction with ChatGPT. When the planner encounters a task it cannot
decompose, it queries ChatGPT. Our method learner then processes the specific action sequence
returned by the LLM and formulates a generic, reusable HTN method. This learned method is
applicable to the same task decomposition that may arise later in the planning process, thereby
averting the need for redundant queries.

In contrast, the planner without the method learner is unable to leverage "past experience".
When faced with a task for which ChatGPT has previously provided a decomposition, the plan-
ner cannot generalize that specific solution into a generic method. Consequently, it must re-query
ChatGPT for every new instance of the task, leading to inefficiency. Note that the method learner
is different from a memoization module: caching a sequence of actions for a given state is insuf-
ficient, as this knowledge fails to apply to different states under the same decomposition. The key
advantage of our method learner is its ability to synthesize abstract, reusable methods from these
concrete, state-specific examples provided by the LLM.

Figure 8 compares the percentage of problems solved across the 10 randomly generated prob-
lems for the Logistics Transportation Domain and Figure 9 shows the results for the Search and
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Number of calls to GPT in the Logistics Transportation Domain

B With Method Learner [l Without Method Learner

20

T™2 T™3 AM2 AM3 TPM1 TPM2

Figure 6: This plot compares number of calls to ChatGPT of the planning system with and with-
out method learner in the Logistics Transportation Domain). The y-axis is the number of calls to
ChatGPT; the x-axis indicates the names of the methods removed for the method learner. The TM
methods are methods for truck transportation; The AM are methods for air transport; and the TPM
methods are the high-level transport package methods.

Rescue domains. The red and blue bars indicate the performance of the planner without and with
the method learner, respectively.

We can make two further observations. First, neither configuration guarantees a 100% success
rate in all scenarios. This is expected, as ChatGPT does not ensure the correctness of its generated
action sequences, and therefore the verifier tasks return a failure. Our system’s verification step is
crucial here, as it validates the ChatGPT’s output, ensuring that the planner does not proceed with
an incorrect plan and that the method learner does not acquire a faulty method from an erroneous
response. Second, the success rate is frequently lower for the planner without the method learner.
This is because each time the planner queries the ChatGPT for a task decomposition, there is a
possibility of receiving an incorrect response. By repeatedly querying for similar tasks instead of
learning from the first successful interaction, the planner increases its exposure to potential LLM
errors, thus increasing the cumulative probability of failure.

The empirical results also highlight a significant challenge for the planner when high-level meth-
ods are missing from the knowledge base. This is particularly evident when observing the perfor-
mance after removing the highest-level methods in each domain—TPM?2 in the Logistics domain
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Number of calls to GPT in the Search and Rescue Domain

B With Method Learner [l Without Method Learner

SCAN2 SCAN3 Cs2 RS2 RS1 SAR2

Figure 7: This plot compares number of calls to ChatGPT of the planning system with and without
method learner in the Search and Rescue Domain). The y-axis is the number of calls to ChatGPT; the
x-axis indicates the names of the methods removed for the method learner. The scan methods are for
the scan location task; the CS methods for the checkSurvivors task; the RS is for the rescueSurvivor
task; and SAR is for the high-level searchANDrescue task.

and SAR2 in the Search and Rescue domain (Figures 8 and 9). The reason for this low success
rate is that the planner, lacking an initial method to decompose the top-level task, must immedi-
ately query ChatGPT to generate a solution for the entire problem. This effectively tasks ChatGPT
with generating a complete sequence of primitive actions from the initial state. Requiring an LLM
to produce a long, entirely correct action sequence is a substantially more complex task, which is
known to be prone to errors.

A key characteristic of the current learning procedure is that it generates methods composed
exclusively of a linear sequence of primitive tasks. This design choice means the system cannot
learn more general methods that include compound subtasks, which are necessary for implementing
abstract control structures like recursion or iteration. This limitation can be illustrated with an
example. The checkSurvivors(loc) method shown in Table 1 uses recursion to check and rescue
an arbitrary number of survivors at a location. Our current learning procedure cannot generate
such a method. Instead, if it learns from a ChatGPT decomposition for a location containing two
survivors, it will generate a specialized method for rescuing exactly two survivors. This learned
method is brittle; it cannot be applied to a new situation involving a larger number of survivors.
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Percentage of problems solved in the Logistics Transportation Domain
B With Method Learner [l Without Method Learner

100

75

50

25

T™2 T™3 AM2 AM3 TPM1 TPM2

Figure 8: This plot compares the percentage of problems solved by the planning system with and
without method learner in the Logistics Transportation Domain). The y-axis is the percentage of
problems solved; the x-axis indicates the names of the methods removed for the method learner.
The TM methods are methods for truck transportation; The AM are methods for air transport; and
the TPM methods are the high-level transport package methods.

Consequently, the planner must re-query ChatGPT to learn a new, distinct method for each unique
number of survivors it encounters, rather than generalizing a single, recursive solution.

7. Related Work

The topic of learning HTNs is a recurrent theme in the research literature. More recently, (Langley,
2025) presents an overview that examines differing assumptions systems make about the types of
knowledge provided. Specifically, it points to forms of inputs for the learner, in our case being the
decomposition of a task into a list of primitive tasks. It also points to a variety of learning objectives,
ours being generalizing the given decomposition as well as learning applicability conditions. We
select a few exemplary works; for a more comprehensive review, see Langley (2025).

Reddy & Tadepalli (1997) is one of the earlier HTN learners. Although not using an HTN plan-
ner, it uses so-called d-rules to decompose goals into subgoals (akin to hierarchical goal networks,
HGNSs (Shivashankar et al., 2012), which represent goal-subgoal decompositions instead of task-
subtasks decompositions in HTNs). It uses inductive generalization to learn goal decomposition
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Percentage of problems solved in the Search and Rescue Domain
B With Method Learner [l Without Method Learner
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Figure 9: This plot compares the percentage of problems solved by the planning system with and
without method learner in the Search and Rescue Domain). The y-axis is the percentage of problems
solved; the x-axis indicates the names of the methods removed for the method learner. The scan
methods are for the scan location task; the CS methods for the checkSurvivors task; the RS is for
the rescueSurvivor task; and SAR is for the high level searchANDrescue task.

constructs, which relate goals, subgoals, and conditions for applying these d-rules. By grouping
goals in this way, hierarchical models are learned that lead to speed-ups in problem-solving. How-
ever, it is possible to solve the same problems without the learned task models. In our work, we
are interested in learning methods for general HTN planning, which is strictly more expressive than
STRIPS planning (Erol et al., 1994).

Our work is related to learning HTNs through teleoreactive logic programs (Choi & Langley,
2005). The key idea is that the HTN planner performs a hierarchical decomposition and encounters
a gap in its HTN knowledge between a state s generated so far and some desired state s’. In such a
situation, it calls a first-principles planner to generate a plan from s to s’, and learns a hierarchical
structure represented as a collection of Horn clauses describing the tasks. These Horn clauses serve
a similar role to the annotated tasks, providing semantics for the tasks. In our work, the decom-
positions are provided by ChatGPT, and we additionally provide explicit soundness guarantees for
the resulting system, which is needed because, unlike a first-principles planner, LLM-based chat-
bots and large-reasoning models can provide incorrect solutions (Shojaee et al., 2025) and have no
means of self-verifying the correctness of their results (Stechly et al., 2024).
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Annotated tasks were introduced in Hogg et al. (2008) for the purpose of learning hierarchical
decompositions. However, the learning problem differs: in that work, the system is provided with
state—action plan traces and learns a set of methods from these traces and annotated tasks. In con-
trast, our system is incremental, learning methods as they are needed. That work was extended in a
number of settings for HTN learning, including nondeterministic domains (Hogg et al., 2009) and
domains where actions have associated costs (Hogg et al., 2010).

A related area of research investigates interactive task learning (ITL) systems that learn sym-
bolic knowledge structures through natural language dialogue between humans and the agent. The
ROSIE system learns symbolic task knowledge by asking a human teacher for definitions of un-
known concepts (Kirk & Laird, 2019). The VAL system uses an LLM as a parser to interpret
user instructions and recursively clarifies unknown actions to build an HTN structure (Lawley &
Maclellan, 2024), while the STARS framework uses an agent to analyze and repair multiple LLM-
generated plans before seeking simple confirmation from a human (Kirk et al., 2024). The main
difference is that our work does not rely on natural language dialogue with a human for task de-
composition and verification. Instead, our system queries LLM for a task decomposition and then
learns a generalized method from it; by using goal regression to derive the method’s preconditions,
we guarantee it is correct and reusable, thereby reducing the need for future LLM queries.

Other works aim at learning both the operators and methods simultaneously in domains that
are partially observable (Zhuo et al., 2014). As in the previous system, the learning problem is
defined by being given a collection of state—action plan traces and annotated tasks. The difference
from the previous system is that the intermediate states are only partially observed (i.e., there are
missing atoms in the state). Interestingly, this work shows that learning methods and operators
simultaneously is more effective than first learning the methods and then the operators. Again,
the main difference from our work is that our learner is incremental, learning methods as needed,
although we assume full state observability.

Other works also aim at learning the goals for HGNs and the HTN methods (Fine-Morris et al.,
2020). That system receives as input the operators and traces but not the task semantics. It casts the
input traces as sentences (e.g., each atom as a word) and uses word embeddings to group similar
atoms, treating them as goals in HGNSs. It also extracts structure (i.e., the goal-subgoal decomposi-
tions). Furthermore, it learns numerical conditions.

Researchers have also investigated using LLMs for authoring planning models e.g., (Oates et al.,
2024), including hierarchical planning models (Fine-Morris et al., 2025). In the latter work, the au-
thors propose a pipeline that process documents to generate the methods. The pipeline progressively
elicits a hierarchical structure, starting with the documents and some background knowledge. In the
intermediate stage it generates semistructured natural language task decompositions. The final re-
sult is a collection of methods for Hierarchical Goal Networks (HGNs) (Oates et al., 2024). It is
conceivable that such work could be combined with ours, in that that work is used as the offline
learner of the initial collection of methods, and ours is used to refine the methods online while
applying them during planning.
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8. Conclusion

In this paper, we presented a procedure for online learning of HTN methods. It is integrated with
the ChatHTN planner. ChatHTN performs standard HTN planning, decomposing the first task ¢ in
its current task list depending on the current state. However, unlike standard HTN planning, if ¢ is
compound and no method exists decomposing ¢, ChaTHTN queries ChatGPT for a decomposition
of ¢ into a sequence of primitive tasks ¢, followed by a verifier task, t,.,, that checks if ¢’s effects
are satisfied after processing ¢. In such a situation, goal regression is performed to obtain a method
decomposing the generalized task ¢1 into the generalized task sequence #1. Goal regression guar-
antees that whenever the method’s preconditions are valid in an state s and a task matching ¢1, then
after ChatHTN processes the instance of 1, it will result in an state satisfying t,.,. Termination
methods, which decompose ¢ into the dummy task doNothing, check if s already satisfies the effects
of tyer, allowing ChatHTN to continue planning for other tasks in the task list.

We tested ChatGPT with the online method learner against standard ChatGPT in the Logistics
Transportation and in the Search and Rescue domains. In both domains we observed that with online
method learning reduces the number of calls to ChatGPT while solving at least as many problems,
and in some cases, even more.

We will explore the following directions for future work. Currently, ChatHTN queries ChatGPT
to decompose the current task into a sequence of primitive tasks. We want to modify ChatGPT to
allow the current task to be decomposed into a sequence of compound and primitive tasks. In doing
s0, we expect to address a limitation of our method learner, which cannot learn recursive methods.
Another alternative way to learn recursive methods is to analyze the sequence of primitive tasks ¢
returned by ChatHTN and use a mechanism similar to Hogg et al. (2008) taking advantage of the
annotated tasks to induce a hierarchical structure (i.e., when ¢ repeats patterns of subsequences such
as load, drive,unload, load drive,unload.
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