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Abstract
In this paper, we pose a new problem for AI researchers: to develop systems that understand written
instructions for complex procedures. We state the problem, the challenges it poses, and why exist-
ing techniques cannot yet solve it. We review prior research on language processing that could be
useful, including its limitations, and analyze the computational elements that solutions to the prob-
lem must incorporate. Finally, we consider the use of controlled experiments to evaluate systems
that learn procedures from instructions and to gain insight into their behavior.

1. Background and Motivation

Throughout its history, artificial intelligence has been concerned with general methods and many
of its most important insights have dealt with generic frameworks for representation, reasoning,
and problem solving. However, there has also been general agreement that these abilities alone
do not suffice and that successful AI systems must incorporate substantial expertise about their
particular application domains. This led to recognition of the “knowledge acquisition bottleneck”,
which concerns providing systems with the expertise they need. Initial responses, associated with
the expert systems movement, relied on the manual entry of domain content, but this approach
was tedious, expensive, and prone to errors. Tools for interactive knowledge acquisition mitigated
these issues, as did high-level formalisms like production systems and logic programming, but the
process was still a difficult one. The field of machine learning was launched largely to overcome
the bottleneck by acquiring expertise automatically from training data.

Supervised induction methods led to early successes (Langley & Simon, 1995) that have con-
tinued to the present, but this approach relies on manual labeling of instances, which is arduous
and costly for large data sets. Also, this paradigm is well suited for classification tasks but not for
procedural ones, so recent efforts have developed alternative responses. One involves learning con-
trol policies from trial-and-error runs in simulators, which has produced self-driving vehicles, game
players (Clark & Storkey, 2015), and other impressive artifacts, but it depends on accurate simu-
lators, which are often unavailable. Recent research on interactive task learning (Gluck & Laird,
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2018) has explored a middle path that tutors AI systems about procedures in natural modalities
like language and sketches, but this process is also tedious and time consuming. We need a more
effective approach to overcoming the knowledge acquisition bottleneck in procedural settings.

Fortunately, many activities are already described in manuals and other written documents, so
a natural response is to acquire knowledge by reading and understanding them. There has been
considerable work on learning by reading, but it has focused on extracting simple facts and concepts
from texts, not on mastering procedural content. We desire intelligent systems that can read the
manual for any device, extract and store the procedures it describes in a standard format, and later
access this knowledge when needed. Expertise acquired in this manner would be useful for robotic
automation of physical procedures, assisting human operators on familiar but complex tasks, and
training novices on entirely new activities.

In the remaining pages, we report progress on the problem of learning complex procedures from
written instructions. We start by specifying the task and noting challenges that require additional
research. Next we review some previous approaches to language processing that offer useful ideas,
as well as their limitations. After this, we present a theoretical framework for semantic analysis
and synthesis that addresses our problem, along with an implemented system, SPROCKET, that
embodies its ideas. In addition, we discuss experimental studies of the system’s behavior on proce-
dural descriptions from a variety of domains. We close by considering alternative approaches to the
problem of learning from written instructions and promising directions for future research.

2. Understanding Instructions and Its Challenges

The research community cannot make progress on a problem without first specifying it clearly. As
with other AI problems, we can define the task of instruction understanding in terms of the inputs
provided and the outputs generated:

• Given: Generic knowledge about a class of domains, such as cooking or electrical maintenance;
• Given: Written instructions for a multi-step procedure, say making an omelet or replacing fuses;
• Find: A computer-interpretable encoding that can be used later for some performance task.

This is a learning problem in that, after processing the inputs, the system has expertise it lacked
earlier. It differs from most work on machine learning, which focuses on statistical induction, but
we regularly say that people learn from reading instructions, so the label should apply to machines
as well. The performance task that uses the learned expertise is another matter we will discuss later.

What do we intend by “written instructions” in the statement above? This refers to a natural
language description of some procedure that is recorded in some medium. Instructions often come
in the form of written text, but they could also start as an audio recording or even a video that
includes subtitles or transcribed commentary. Written recipes for food preparation are familiar
examples, but Table 1 provides another complex instance: a maintenance requirement card that US
Navy personnel use when repairing equipment. These instructions describe a procedure that anyone
can carry out on specific devices in the form of written English with clearly separated steps. The
learner must acquire procedural expertise from this single description; it cannot extract regularities
from thousands or even tens of different examples. Finally, because the instructions are recorded,
the learner has no opportunity to ask clarification questions or obtain other information not included.
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Table 1. A maintenance requirement card that provides instructions for how to inspect and replace actuator
controller fuses. The text is based on US Navy material but does not come from an actual requirement card.

Inspect and Replace Actuator Controller Fuses:
a. Place Service Disconnect in “OFF” position.
b. Open actuator panel door.

WARNING: Consider all electrical leads to be energized until positively proven they are de-energized.

c. Use multimeter to check voltages between each utilized connection in the upper terminal block
and the bottom, neutral bus bar.

d. If any wire shows voltage greater than 0 V, then perform no more maintenance. Close panel door,
leave Service Disconnect in position, and inform supervisor of findings.

e. Using fuse puller, remove each fuse and inspect for damage or discoloration.

NOTE: Fuse resistance should be checked while fuse is removed from panel.

f. Use multimeter to check resistance of each fuse. Resistance should be less than 0.1 ohm.
g. Reinstall fuses, replacing with new any that failed inspection.
h. Close panel door.
i. Restore Service Disconnect to “ON” position.
j. Report to supervisor any replaced fuses, provide the failed fuses which were replaced.

What do we mean by “complex procedures” in the problem statement? They comprise a set of
partially-ordered actions that transform one or more initial situations into one that satisfies some
goal. These situations are relational in that they involve configurations of objects or entities, some
affected by the actions. Procedures are also causal in that they describe the effects of activities
under certain conditions, and thus specify how to alter the world to achieve goals. In many cases,
they are also hierarchical in that they decompose complex activities into simpler ones, with higher
levels abstracting away the details. Finally, they are often conditional in that they specify ways to
achieve goals in different situations. Most of these features are apparent in the sample instructions
presented in Table 1.

Why does this class of problems pose a challenge for AI? From the perspective of language
processing, the brevity of instructions means they often omit not only steps but also objects that play
key roles. Another issue is that understanding procedural descriptions requires the construction of
explanations, often causal, that relate actions to goals that may be implicit. Moreover, the knowledge
supporting this inference is generic, at the level of common sense, rather than specific to the activity
being mastered. Finally, the conditional character of many procedures requires representing and
reasoning about hypotheticals, raising another hurdle seldom addressed in language processing.

From the perspective of machine learning, understanding instructions introduces many of the
constraints on human-like learning discussed by Langley (2022). These require that, to mimic
humans, learning should involve the incremental, piecemeal acquisition of modular, relational ele-
ments in the presence of background knowledge. The ability to satisfy these constraints supports
rapid learning, in this case the construction of complex procedures from individual text descriptions.
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Statistical language processing may still play a supportive role in this process, but only to the extent
that it helps an AI system acquire new cognitive structures in a nonstatistical manner. In particular,
large language models, while able to offer commentary on the details and variants of common pro-
cedures, do not as of yet directly address the task of codifying procedural knowledge in usable form
from single descriptions of novel procedures.

3. Previous Research and Its Limits

Natural language processing is a mature field with a long history, so the paucity of work on un-
derstanding procedural instructions is concerning. Nevertheless, the literature has explored many
promising ideas, so we should review the areas that seem most relevant. These include:

• Sentence processing, which analyzes the syntactic structure and meaning content of sentences
using knowledge about lexical items, grammar, and semantics (e.g., Katz, 1997; Mooney, 2007;
McShane et al., 2018; Kamath & Das, 2019). However, research in this area has emphasized syn-
tactic parsing and even work on semantic methods has focused on individual sentences, whereas
we need larger-scale analysis.

• Discourse processing, which operates over extended text that it organizes into larger, coherent
structures inferred using knowledge about plausible relations among segments (e.g., Grosz &
Sidner, 1986; Webber, Egg, & Kordoni, 2012). This appears relevant to comprehending instruc-
tional text, but most treatments have used linguistic markers rather than causal knowledge to
identify structure, and there has been little concern with procedures.

• Story understanding, which interprets the actions and events in a narrative in terms of knowledge
about participants’ beliefs and goals about the world and others (e.g., Dyer, 1983; Winston &
Holmes, 2018). This paradigm also seems relevant to our problem, but it deals with specific
events rather than generic procedures, often involves multiple actors with conflicting goals, and
analyzes one unfolding sequence rather than hypotheticals.

• Abductive inference, which constructs explanations of situations and events in terms of knowl-
edge about the physical world, human agency, and interaction (e.g., Ng & Mooney, 1990; Mead-
ows et al., 2014; Gordon, 2018). This literature has more direct relevance to instruction under-
standing but, again, it has focused on specific events rather than generic activities. However, its
methods for guiding search over explanations may prove useful.

• Question answering, which stores content in some accessible format, retrieves elements perti-
nent to queries, and communicates these results in appropriate ways (e.g., Lehnert, 1978; Katz
et al., 2006; Khashabi et al., 2018). This subfield has also developed promising techniques, but
it has emphasized answering simple factual questions and it has not typically addressed either
causal or hypothetical reasoning.

• Learning by reading, which interprets written documents, extracts their content, and stores this
information in a format that can be accessed and used later (e.g., Forbus et al., 2007; Mitchell
et al., 2018; Friedman et al., 2017). Research on this topic is very similar in spirit to our own,
but it has focused on the acquisition of factual content rather than generic procedures, so the
application of its techniques will be limited.
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There have been some efforts on extracting procedures from text using statistical analysis of corpora
(e.g., Kiddon et al., 2015; Park & Nezhad, 2018), but they require thousands of examples to produce
only simple structures, so we do not consider them viable responses to the challenge. Instead, we
must develop cognitive systems that, as Marcus and Davis (2021) have proposed, exhibit a range of
intellectual abilities that are associated with the human mind.

4. A Framework for Semantic Analysis and Synthesis

Langley, Shrobe and Katz (in press) analyze the acquisition of procedures from written instruc-
tions as a cognitive task that involves three subtasks: syntactic processing, semantic interpretation,
and procedure construction. These subtasks can be accomplished sequentially or they can, to a
degree, be accomplished in tandem. For instance, syntactic processing and semantic interpreta-
tion, addressed concurrently, can inform each other, and semantic interpretation can be informed by
knowledge of previous procedures. Understanding of procedures can be demonstrated through per-
formance tasks such as: procedure execution, training of human performers, execution monitoring,
using procedures in planning contexts, and answering questions.

In this section, we present a framework for interpreting procedural descriptions that combines
syntactic and semantic processing with support for question answering. Appendix A lists sample
procedural descriptions and questions of the sort addressed by this framework. Figure 1 outlines the
approach, with processes depicted as blue rectangles, knowledge sets as gray or green rectangles,
and background knowledge in green. Arrows indicate flow of data between processes and knowl-
edge sets. Procedural descriptions are submitted to the syntactic analysis process, which relies on
two sets of background knowledge, a lexicon and a grammar, to produce parse structures that spec-
ify language tokens and expressions identified within the text. Semantic processing occurs next,
as two activities—semantic analysis and semantic synthesis—that work together to interpret enti-
ties, events, and relationships associated with the procedural description. Three sets of background
knowledge support semantic analysis and synthesis:

• A taxonomy of entity types in domains of interest, the principal organizing relation being that
one entity type “can function as” another type for purposes of participation in events;

• A set of event models that describe the unfolding of particular types of events in terms of time-
varying properties, relationships, and other attributes of participating entities; and

• A set of interpretation rules that suggest candidate event models and related structures as inter-
pretations of language expressions recognized within the parsed text.

Semantic analysis uses the interpretation rules to isolate mentions of entities, events, and relation-
ships within the text, then interprets these quantities to the extent possible based on information in
the text and available from previously-formed interpretations. This process may leave some inter-
pretations unfinished. Examples include when an event reference in the text fails to mention one or
more participants, when an event reference allows for alternative versions of an event, or when it is
unclear if an entity reference refers to a previously established entity in the procedure.

After this, semantic synthesis completes all partial interpretations of entities, events, and re-
lationships by considering them in the context of the evolving scene model, which describes the
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Figure 1. Processes (blue) and knowledge sets (gray or green, with background knowledge in green) involved
in the approach to interpretation.

activity from the beginning of the procedure up through the most recent event to be completely in-
terpreted. Once a new event has been fully interpreted, semantic synthesis adds it to the scene model.
Semantic synthesis also introduces new entities, events, and relationships where appropriate. The
process introduces new entities if they are required by an event model yet are unrecognized among
established entities in the scene. It also adds new events that depict ramifications of other events,
along with new relationships that hold among events and entities in the growing scene model.

To complete the interpretation of an event, semantic synthesis may need to choose among pos-
sible interpretations that specify variants of the event or alternative identities of unmentioned event
participants. In this case, it can apply preferences, such as favoring interpretations that involve
participant entities active in immediately-preceding events or favoring interpretations with precon-
ditions of events satisfied by persisting effects of preceding ones. After semantic analysis and
synthesis have finished, the external interaction process fields and responds to questions about the
results of interpretation. The scene model and the constructed interpretations of entities, events, and
relationships form a basis for responses to these questions.

Together, these elements and their interactions provide a complete framework for reading writ-
ten instructions, interpreting and combining their contents into stored procedures, and using them
to answer questions about these activities. We have kept the theory intentionally abstract, so it
makes no commitments about either internal representations or mechanisms that operate on them,
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affording both symbolic and statistical approaches. Nevertheless, it provides strong constraints on
possible implementations of the framework (Langley, 2018).

5. The SPROCKET Interpretation System

We have constructed an integrated system, SPROCKET, that instantiates the framework just outlined
and serves as a vehicle for demonstrating and evaluating its adequacy. In this section, we describe
the operation of its components and how they jointly interpret written descriptions of procedures.
Appendix B details the strategies that SPROCKET uses for semantic interpretation.

5.1 Syntactic Processing

The first of SPROCKET’s constituents focuses on parsing the input text. This module relies on
START (Katz, 1997; Katz, Borchardt, & Felshin, 2006), a natural language system that performs
syntactic analysis of text coupled with initial semantic analysis to produce a set of nested ternary
expressions. This parsing process is applied to the title of a procedural description and then succes-
sively to the sentences that form the body of this description.

An example will illustrate START’s operation. This involves two consecutive sentences in a
description for replacing cork on a clarinet, extracted from the Web site ifixit.com:

Cut the new cork to match the width of the tenon joint. Peel off the backside of the cork
to reveal the adhesive.

The module parses these sentences individually, generating a set of ternary expressions, some of
which include:

[cut-11, has_purpose-11, match-12] [peel_off-13, has_purpose-14, reveal-14]
[you, cut-11, cork-3] [you, peel_off-13, backside-1]
[you, match-12, width-1] [you, reveal-14, adhesive-1]
[cork-3, has_property-12, new] [backside-1, related-to-15, cork-3]
[width-1, related-to-13, tenon_joint-1]

These parse structures illustrate how START captures syntactic relationships within each sentence,
plus some semantic relationships. For example, has_purpose specifies a relationship between events
and related-to denotes a relationship between entities. The system also unifies some entity references
across sentences. For instance, cork-3 is used to depict both “the new cork” in the first sentence and
“the cork” in the second.

START operates using a lexicon that contains approximately 95,000 English terms, including
lemmas (dictionary forms of terms), morphological and derivational inflections of those forms, and
alternative parts of speech for those forms. Entries in the lexicon specify terms’ parts of speech, their
lexical properties, and their relationships to other terms by synonymy and hypernymy. The system’s
encodings of English grammar let it identify a wide range of language expressions, including ones
for noun–modifier relationships, verb–argument relationships, and relationships between clauses.
This version of START was able to parse nearly all sentences in the 52 procedural descriptions that
we discuss later. However, in rare cases, we had to create new lexicon entries, and in others, we
restructured complex sentences to enable parsing.

7
393



G. BORCHARDT, S. FELSHIN, B. KATZ AND P. LANGLEY

Figure 2. (a) An event model for “pouring off”, from SPROCKET’s background knowledge. (b) The scene
model, including the completed interpretation of a “pouring off” event.

5.2 Semantic Analysis

SPROCKET’s second module addresses semantic analysis, semantic synthesis, and external interac-
tion. This builds on IMPACT, a system for describing and reasoning about events (Borchardt et al.,
2014; Borchardt, 2015). Semantic processing relies on use of a taxonomy of entity types, a collec-
tion of event models, and a set of interpretation rules. IMPACT renders knowledge elements using
an extension of the Moebius encoding of parsed language (Borchardt, 2014), and it describes the
contents of event models using the Transition Space representation (Borchardt, 1994, 2014, 2015;
Borchardt et al., 2014), which has roots in Waltz’s (1982) Event Shape Diagram representation.

Figure 2 (a) presents an event model formulated using Transition Space and the Moebius encod-
ing. This event model depicts an event of pouring off a liquid quantity from a solid quantity. Angle
brackets distinguish variables in Transition Space descriptions (e.g., <'liquid_quantity_component 1'>).
Appendix C provides additional examples and details of the representation.

Semantic processing proceeds by selecting, instantiating, transforming, matching, and combin-
ing event models. This focuses on one sentence at a time, beginning with application of interpre-
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tation rules, which isolate and operate on instances of syntactic constructions in the parsed text:
nouns; nouns modified by participles or adjectives; clauses; and relationships indicated through the
use of connectives, prepositional phrases and quantifiers. As the interpretation rules fire, they trigger
semantic analysis and semantic synthesis for the elements—entities, events, and relationships—that
were isolated by the rule firings.

In the course of its interpretation of a procedural description, SPROCKET constructs a variety
of temporary knowledge elements that serve as partial or complete interpretations of entities, events,
and relationships. In particular, semantic analysis produces partial interpretations of events in those
cases where not all participants are mentioned in the text. For example, in a procedural description
for making “sausage stuffed jalapenos” from the Web site allrecipes.com, semantic analysis forms
an initial interpretation for the event in the sentence

Drain grease.

by creating a partial instantiation of the event model for “pouring off” presented in Figure 2 (a), in
which the variables <'human 1'> and <'liquid_quantity_component 1'> have been replaced with constants
'you' and 'grease 001', respectively, and the variables <'solid_quantity_component 1'>, <'time 1'> and
<'time 2'> are retained pending continued processing.

5.3 Semantic Synthesis

The next stage, semantic synthesis, considers alternative, complete instantiations of this event
model, each of which replaces remaining variables with constants that refer to typed entities avail-
able in the scene model and introduces time points that position the event at the model’s current
end. SPROCKET then compares each generated interpretation of the event to the scene model and
applies heuristics to select a preferred interpretation. For example, the selected candidate might
replace <'solid_quantity_component 1'> with an entity recently active in the scene, 'sausage 001', in
addition to specifying the start and end times of the event as 'time 006' and 'time 007'. The module
adds this interpretation to the scene model, creating the version depicted in Figure 2 (b).

We can view semantic synthesis as carrying out greedy heuristic search through a space of pos-
sible event interpretations and resulting scene interpretations. Given multiple candidate interpreta-
tions, the system considers five factors, in order, until one candidate emerges as the best choice:

• Fewer new entities are introduced into the scene at the start of the event;
• Fewer existing but recently inactive entities are involved in the event;
• Fewer new entities are created in the course of the event’s unfolding;
• Entities in the event were involved in more recent activities; and
• More preconditions of the event are fulfilled by a preceding activity.

In practice, these heuristics have worked well for SPROCKET, without need for backtracking. How-
ever, the system could benefit from additional heuristics or more sophisticated search strategies.

SPROCKET also maintains a number of event models that specify expected context-dependent
ramifications of other events. For example, when an entity changes position, it may no longer be
“at”, “on”, or “in” another entity like a pan. Similarly, when an entity comes to be “in” a container,
the module may predict it will combine with other objects already in it. Following each addition of
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Table 2. Queries supported by the SPROCKET system.

a fully interpreted event to the scene model, the system considers all matches of these ramification
event models to the current ending portion of the scene model and, on the basis of these matches,
conditionally includes the additional assertions.

5.4 Question Answering

After SPROCKET has interpreted all the sentences in a procedural description, the human user
can inspect and assess its interpretation through a graphical/menu-based query facility. The system
constructs responses by referring to content generated during earlier processing: the scene model;
interpretations of entities, events and relationships; the input text; and the parse structures produced
by START. Table 2 lists the different queries that this final module supports.

Using this facility, a SPROCKET user can assess its interpretations with respect to broader
questions such as those listed in Appendix A: “Which entities are distinct from one another?”,
“Which entities participate in which events?”, “Which versions of particular events occur?”, “What
relationships exist between pairs of events and entities?”, “What events occur as ramifications of
other events?”, and “What changes do the various entities undergo?”. For example, after processing
the sentence “Drain grease” above, asking about associated events will reveal the unmentioned
participant to be the sausage involved in an earlier step.

6. Experimental Results

To test the viability of our approach, we evaluated SPROCKET’s performance in interpreting pro-
cedural descriptions and the usefulness of its knowledge elements. We applied the system to 52
procedural descriptions extracted from the Web sites allrecipes.com, eatingwell.com, and ifixit.com,
as well as documents supplied by the U.S. Navy. These descriptions concerned a variety of topics
like meal preparation, mechanical assembly and disassembly, cleaning, adhesives, fabrics, electrical
systems, lubrication, fluids, and dyes. Each new description required addition of some knowledge,
producing a total of roughly 600 taxonomy entries, 200 event models, and 600 interpretation rules.

To evaluate SPROCKET’s performance, we first formed expectations for the interpretation of
specific elements of interpretation—entities, events, and relationships—associated with each proce-
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Figure 3. Relative precision and recall for (a) interpretation of 52 individual procedural descriptions, and (b)
collectively, by type of interpretation element.

dural description. The number of expectations varied considerably among the 52 tested procedural
descriptions, from 24 expected elements of interpretation for one description, to 172 for another.
We then compared our expectations with the interpretations that SPROCKET generated. We judged
each element of interpretation produced by the system as being acceptable or unacceptable. In ad-
dition, we identified any omitted—or in rare cases added—elements of interpretation relative to our
expectations. These assessments let us calculate a variant of precision and recall that gauged the
system’s interpretations relative to these expectations.

Figure 3 (a) presents the precision and recall scores relative to expectations for individual proce-
dural descriptions, whereas Figure 3 (b) shows the scores for specific types of interpretive elements.
In Figure 3 (a), all procedural descriptions attain relative precision and recall scores of at least 0.75,
and typically 0.85 or better, suggesting that SPROCKET produces acceptable interpretations of the
52 procedural descriptions when given appropriate knowledge elements.

In both diagrams, precision and recall scores fall mainly along and below the diagonal. This is
because errors of commission negatively affect both precision and recall, whereas errors of omis-
sion negatively affect only recall. Acceptable interpretations produced by the system include the
examples described in Appendix A. For example, when interpreting a procedure for replacing oil in
a compressor, from the expression “no more oil comes out”, the system correctly chooses an event
version and unmentioned participant such that “no more oil comes out of the reservoir”. On in-
spection, the two least-well interpreted procedural descriptions in Figure 3 (a) suffered from errors
in the attachment of prepositional phrases and references to an entity involved in many events. In
Figure 3 (b), the relatively lower recall score for entity relationship interpretations is due to diffi-
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Figure 4. Number of knowledge elements SPROCKET required to correctly interpret (a) 30 procedural de-
scriptions for cooking and (b) 22 descriptions for maintenance and repair, with separate curves for taxonomy
elements, event models, and interpretation rules. Each curve reflects results for 10,000 presentation orders.

culties in interpreting unassociated abstract quantities, as when mention of “the two edges” appears
without its related quantity (e.g., “the two edges of the spring”).

We also tested the benefits of knowledge provided to SPROCKET. Our hypothesis is that as
the system is exposed to more and more procedural descriptions, and corresponding knowledge
is added, the system’s requirements for further additions of knowledge will decrease relative to
its requirements for descriptions processed earlier. To test this, we began by identifying the spe-
cific knowledge elements—taxonomy entries, event models, and interpretation rules—needed to
interpret each of the 52 procedural descriptions processed by SPROCKET. We then used this in-
formation to calculate, for a particular ordering of procedural descriptions submitted to the system,
when each needed knowledge element would have to be supplied to the system—perhaps earlier
if used during the interpretation of a procedural description early in the ordering, or perhaps much
later if that particular knowledge element was not used during the interpretation of any procedural
description before some later description in the ordering.

For the 30 cooking-related descriptions that SPROCKET processed, and separately for the 22
maintenance and repair descriptions it handled, we considered 10,000 randomly ordered presen-
tations of each set’s descriptions, recording in each case the specific progression in knowledge
that would be required to process the descriptions in that that order of presentation. Figure 4 (a)
shows the growing knowledge needs of the system, averaged over the runs, as it encounters the 30
cooking-oriented procedural descriptions, whereas Figure 4 (b) depicts the analogous numbers for
the 22 maintenance and repair descriptions.

For both sets of procedural descriptions and across all three knowledge types—taxonomy en-
tries, event models, and interpretation rules—the slope of each curve decreases monotonically, indi-
cating that the need for further additions of knowledge indeed diminishes as SPROCKET processes
successive descriptions and accumulates knowledge. The most pronounced reduction in need for
new knowledge was associated with event models for the 30 cooking recipes. This makes sense,
as there are arguably fewer types of common events that arise in cooking contexts than in general
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maintenance and repair. The number of interpretation rules grows more rapidly than event models,
which also makes sense, because multiple language expressions can describe the same event type.
Finally, entries in the taxonomy rise the fastest, presumably due to the many language terms needed.
Mitigating this is the fact that augmenting the taxonomy is a relatively easy task.

A separate question related to usefulness of knowledge elements is whether their addition can
interfere with the system’s performance by undermining the system’s ability to interpret previously
encountered procedural descriptions. In the course of SPROCKET’s processing of 52 descriptions,
each accompanied by appropriate knowledge elements, we have not observed interference of this
sort. Interpretations supported previously by the system have not been adversely affected by either
the addition of new knowledge elements or by the occasional refinement of ones entered previously.

7. Related Research

Our research on learning procedures from written instructions has drawn on ideas from the earlier
work discussed in Section 3, but we should also examine more recent efforts that address similar
tasks. For instance, research in computational linguistics and language understanding has produced
strategies for coreference resolution, ellipsis processing, and word sense disambiguation in text.
These techniques draw on various forms of knowledge. In particular, McShane and Nirenburg
(2021) describe the use of an ontology in the early stages of semantic interpretation and domain-
specific knowledge in later ones. Similarly, our event models describe commonly occurring events
that can be stored in an ontology applied in the early stages of semantic interpretation.

Our approach introduced this content manually, but other recent work has explored its automated
extraction. For example, Miglani and Yorke-Smith (2020) report a system that acquires knowledge
like that in our event models, whereas Bosselut et al. (2018) and Dalvi et al. (2019) examine its use in
forming interpretations of entities, events, and inter-event relationships. Our approach complements
their work by exploring the broad contributions of knowledge about events in service of semantically
interpreting procedural descriptions.

Recently, Cohen and Mooney (2023) have leveraged large language models to identify unmen-
tioned entities and actions in textual descriptions of familiar procedures. More generally, we might
expect that large language models could perform other component tasks within the interpretation
process, particularly in the semantic analysis stage of our framework—tasks such as suggesting
temporal ordering of events from information in an input text, recognizing explicit relationships
specified between pairs of entities and events, and suggesting paraphrases of events in service of
advancing possible interpretations of these events. Separately, our own investigations suggest that
large language models can serve as a source of background knowledge about states and changes that
occur during common events—knowledge useful for constructing a library of event models. In ad-
dition, we might expect that large language models can serve as a source of background knowledge
for building out a taxonomy and set of interpretation rules as used within our framework.

These initial results herald an opportunity for developing hybrid interpretation systems that
employ both statistical and symbolic mechanisms, as explored by McShane, Nirenburg, and English
(2024). Hybrid systems for interpreting procedural descriptions may benefit from both the wide
coverage of large language models and the enhanced precision of symbolic techniques like those
described here.
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8. Concluding Remarks

The research reported in this paper offers four main contributions. First, it specifies the problem of
understanding procedural descriptions in which a system inputs textual descriptions and produces
expertise that supports question answering and other performance tasks. Second, it casts semantic
interpretation of procedural descriptions as a two-stage process. For each sentence, analysis first
isolates units of meaning and forms partial interpretations of entities, events, and relationships, after
which synthesis extends and selects among these interpretations as it constructs a model of the un-
folding scene. Semantic analysis and synthesis operate on three collections of general knowledge: a
taxonomy of entity types, a set of event models, and a set of interpretation rules. Third, the research
provides SPROCKET, an implemented system that embodies this approach to understanding proce-
dural descriptions. Finally, it evaluates SPROCKET’s performance mechanisms and its knowledge
structures, showing that, together, the approach to procedural understanding works as intended.

Our ongoing research focuses on extensions and refinements to the approach and its imple-
mentation. We are creating an explanation facility to provide language-formulated justifications
for system interpretations based on the knowledge elements used and the operations performed on
them. We are also investigating strategies for augmenting the background knowledge that supports
semantic interpretation—taxonomy entries, event models and interpretation rules—as well as addi-
tional channels of descriptive information about individual procedures to be learned—for example,
specifications of initial conditions; descriptions of available parts, materials and tools; language
summaries of observed demonstrations; and associated diagrams, images or video.

Given multiple channels of information regarding a procedure to be learned, an extended in-
terpretation system will frequently need to reconcile competing accounts of an activity. We expect
that our techniques for semantic synthesis will help reconcile these accounts, along with related
techniques we have developed for recognizing events from observations (Borchardt et al., 2014;
Borchardt, 2015). More generally, we predict that an initial understanding of a procedure, formed
by interpreting a written description, can serve as the basis for assessing and integrating additional
information into a unified, expanded comprehension of the activity, making our work to date a
springboard for more advanced abilities.
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Appendix A: Sample Descriptions and Questions

Table 3 lists two written procedural descriptions extracted from public Web sites, both modified
slighly for ease of software processing, but retaining their original content and character. These
examples illustrate six ways in which procedural descriptions can require their reader to fill in
details, plus six corresponding lines of questioning that can be posed to an understanding system:

• Which entities are distinct from one another? An entity may be referenced in multiple ways
within a procedural description. In the quiche example in Table 3, “pie plate” and “pie pan”
refer to the same entity. In a separate description, “cold water” is later referred to as “hot water”,
following changes to the entity. Also, a description may reference a previously unmentioned
entity, as when several quantities are combined, then referred to as “rice salad”.

• Which entities participate in which events? Some entities will be explicitly mentioned as partic-
ipants within events, while others may not. For instance, in the compressor example in Table 3,
the filler cap and drainage plug are to be unscrewed from the compressor, and no more oil is
to come out from the reservoir. In the quiche example, the instruction “Drain, crumble and set
aside.” describes actions to be performed on the bacon.

• Which versions of particular events occur? In some cases, separated from the context, descrip-
tions of actions can suggest multiple possible variants of events. For example, in the compressor
example, no more oil may be coming out of a container or no more oil may be leaving a region
of space. Often, as in this case, the need to determine which version of an event is occurring
arises from omitted mention of one or more participants in the event.

• What relationships exist between pairs of events and entities? Some relationships may be explic-
itly stated in the text, using connectives (e.g., “until”, “if” and “while”), quantifiers (e.g., “each”
and “any”), and prepositions (e.g., “of”). Other relationships may be implicit; for instance, in
the compressor example, unscrewing the drainage plug enables—sets up preconditions for—the
later event of screwing on the drainage plug.

• What events occur as ramifications of other events? Immediate ramifications may go unmen-
tioned, as in the quiche example, when the bottom of the pie plate is lined with cheese and
bacon, which then combine. Later, when the liquid mixture is poured into the pie pan, this com-
bines with the cheese and bacon. Also, when the quiche is served, the quiche and each of its
ingredients come out of the pie pan.
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Table 3. Example procedural descriptions from (a) ifixit.com and (b) allrecipes.com, slightly modified.

• What changes do the various entities undergo? Given even a very general understanding of the
events that occur during a procedure, the reader should be able to identify changes that apply to
particular participating entities. For instance, in the quiche example, the bacon comes to be in
the skillet, then it becomes hot, crumbled, not in the skillet, in the pie pan, part of a combination
with the cheese, not in the pie pan, and so forth.

Appendix B: SPROCKET’s Semantic Interpretation Strategies

The upper portion of Figure 5 shows strategies SPROCKET uses for semantic analysis. For each
sentence processed, the system first conducts semantic analysis for entities, then relationships, then
events, which reflects dependencies between these types of element. For instance, when processing
a food recipe, it might identify “pie pan” as the same as a previous reference to “large pie pan”. After
this, it might use information about temporal ordering to focus consideration on a particular, men-
tioned event (e.g., an instance of ”filling”) and assemble details about this event from information
provided in the textual description. These steps produce event models that serve as candidate clause
interpretations, possibly with some participants left unspecified. The lower portion of Figure 5 item-
izes SPROCKET’s strategies for semantic synthesis. As with semantic analysis, this module first
focuses on entities, then relationships, and then events in order to comply with dependencies that
exist between these types of element. Three examples will illustrate some of these strategies:

• In one case, SPROCKET resolves a reference “hot water” to an entity associated with an earlier
reference “cold water” involved in an event that subsequently made it “hot” in the scene model.

• In another, the system proposes identities for an unmentioned participant using known entities
and selects an interpretation based on how well its elaborated specifications fit known activities.

• In a third scenario, it associates an abstract quantity that was referenced simply as “an amount”
with an entity, “drywall compound”, that was recently active in the scene model.

Other strategies employed within SPROCKET operate in a similar manner. Semantic analysis acts
first, but in some cases will produce only partial interpretations of elements in the input description.
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Figure 5. Strategies for semantic analysis and synthesis used by the SPROCKET interpretation system.

Semantic synthesis steps in when necessary to produce complete interpretations of elements by
building on relations already established in the evolving scene model.

Appendix C: Knowledge Elements Utilized in Semantic Interpretation

Figure 6 presents three examples of knowledge elements used within SPROCKET in support of
semantic analysis and synthesis. These knowledge elements are formulated using an extension of
the Moebius encoding (Borchardt, 2014). Moebius specifies variables in enclosing angle brackets
and language expressions using parenthesized constructions that optionally tag their elements with
specifications of syntactic relations and semantic categories.

Figure 6 (a) depicts a taxonomy entry for the type bottle. Taxonomy entries form a hierarchy
such that each type “can function as” each of its supertypes for purposes of participation in events.
The entry for bottle lists tool and container as supertypes. Figure 6 (b) depicts an event model con-
cerning placement of an entity in a container. SPROCKET’s event models specify a statement of
the event, plus a set of assertions that describe states and changes in language-motivated attributes
of entities participating in the event; these assertions conform to the design of the Transition Space
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Figure 6. Examples of (a) a taxonomy entry, (b) an event model, and (c) an interpretation rule (each slightly
simplified), as used within SPROCKET for semantic analysis and synthesis.

representation (Borchardt, 1994, 2014, 2015; Borchardt et al., 2014), summarized below. Figure 6
(c) depicts an interpretation rule for language expressions that involve the construction “push back”.
Interpretation rules match patterns of parsed language—for SPROCKET, patterns of ternary expres-
sions produced by the START system parser—and on the basis of these matches propose candidate
event models to serve as possible interpretations of the matched language expressions.

The Transition Space representation encodes event descriptions in various stages of process-
ing during semantic interpretation, from background event models that specify their event partici-
pants and time points as variables, to partially- and fully-instantiated event models produced dur-
ing semantic analysis and synthesis, to the scene model formed by combining fully-instantiated
event models produced during semantic synthesis. Each event model specifies activity in terms
of states and changes in boolean, qualitative and quantitative attributes of one or two entities, and
attributes are encoded as simple language expressions. Concurrent states and changes combine to
form transitions—specifications of activity over single intervals of time—and transitions combine
to form event descriptions, which can be viewed as “paths” in a space of all possible transitions.

Transition Space is similar in expressiveness to PDDL and its successors (e.g., as described
in Green, 2025); however, its usage is primarily for matching. In SPROCKET, Transition Space
portrays typical occurrences of events, which may or may not include all and only their necessary
conditions and effects. Also, the representation is constrained in ways that enhance its support for
matching: attributes are chosen from the relatively small set of properties, functions and relation-
ships between entities that can be expressed simply in language, and states and changes in attributes
are such that they can be decomposed into a small set of primitive, pairwise comparisons, where
one quantity is asserted to “equal”, “not equal”, “exceed” or “not exceed” another quantity.
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