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Abstract
AI agents deployed to assist and collaborate with other agents often have to do so without prior
coordination. Methods considered state of the art for such ad hoc teamwork pose it as a learn-
ing problem, using a large labeled dataset to model the action choices of other agents (or agent
types) and determine the actions of the ad hoc agent. These methods lack transparency and make
it difficult to rapidly revise existing knowledge in response to changes. Our architecture for ad
hoc teamwork leverages the complementary strengths of knowledge-based and data-driven meth-
ods for reasoning and learning. For any given goal, we enables an ad hoc agent to determine its
actions through non-monotonic logical reasoning with: (a) prior domain-specific commonsense
knowledge; (b) models learned and revised rapidly to predict the behavior of other agents; and
(c) anticipated abstract future goals based on generic knowledge of similar situations in an exist-
ing foundation model. The agent also processes natural language descriptions and observations
of other agents’ behavior, incrementally acquiring and revising knowledge in the form of objects,
actions, and axioms that govern domain dynamics. We experimentally evaluate the capabilities of
our architecture in VirtualHome, a realistic simulation environment.

1. Introduction

Consider an assistive AI agent deployed to complete household tasks in collaboration with a human
it has not worked with before. Figure 1 shows snapshots of a motivating scenario in which the AI
agent and a human agent are preparing breakfast and setting up a workstation. The agents have a
limited view of the environment and do not communicate with each other. Each agent is aware of
the state of the domain, including the location of teammates and the outcomes of their actions (e.g.,
change in location of an object moved by a teammate). The agents have to reason with different
descriptions of domain knowledge and uncertainty that include qualitative statements (“eggs are
usually in the fridge") and quantitative measures of uncertainty (“I am 90% sure I saw the eggs on
the kitchen table"), adapting their actions to changes in the domain and teammates’ behavior. These
characteristics correspond to Ad hoc Teamwork (AHT), requiring cooperation “on the fly" without
prior coordination (Stone et al., 2010). It arises in many practical applications in robotics, and poses
challenges in knowledge representation, reasoning, and learning.

Research in AHT has evolved from using predefined protocols that encoded specific actions for
the ad hoc agent in specific situations, to methods that learn probabilistic or deep network models
to estimate the behavior of other agents (or agent “types") and optimize the ad hoc agent’s actions
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Figure 1: Screenshots from VirtualHome (Puig et al., 2018) showing a human (female in green top)
and an assistive AI agent (male in blue shirt) collaborating.

based on a long history of prior interactions with similar agents. It is often difficult to gather such
training datasets of different situations and computationally expensive to build the necessary models.
Moreover, these models lack transparency, making it difficult to understand the agent’s decisions.

In a departure from existing work, our prior work developed an AHT architecture that enabled
an ad hoc agent to make decisions based on non-monotonic logical reasoning with prior knowledge
and simple predictive models of other agents’ behavior (Dodampegama & Sridharan, 2023). This
paper describes an architecture (KAT) that extends our prior work to enable each ad hoc agent to:

• Perform non-monotonic logical reasoning with prior domain knowledge and predictive mod-
els of other agents’ behavior learned from limited examples to support scalable adaptation;

• Leverage a Large Language Model (LLM) to anticipate future tasks to be completed, adapting
the LLM’s output to domain-specific knowledge and experience; and

• Incrementally revise prior knowledge based on LLM-based processing of natural language
descriptions of actions and outcomes, and decision tree induction applied to observations.

We use Answer Set Programming (ASP) (Gelfond & Kahl, 2014) for non-monotonic logical rea-
soning, GPT4o mini (OpenAI et al., 2024) as the LLM. We explored decision making at different
abstractions in household scenarios in VirtualHome, a realistic physics-based 3D simulation envi-
ronment for multiagent collaboration (Puig et al., 2018).

2. Related Work

Researchers have explored AHT for more than two decades under different names (Mirsky et al.,
2022). Initial work used predefined protocols or plays that encoded specific actions for the ad hoc
agent in specific scenarios (Bowling & McCracken, 2005). Subsequent work used probabilistic
and sampling-based methods such as Upper Confidence bounds for Trees to determine the ad hoc
agent’s actions (Barrett et al., 2013). Recent methods considered state of the art for AHT have
posed it primarily as a learning problem; a key component predicts behavior of other agents and
determines the ad hoc agent’s behavior using a long history of prior interactions with similar agents
or agent types. This includes the use of Fitted Q Iteration to learn action selection policies from of-
fline data of each teammate type (Barrett et al., 2017); attention-based recurrent neural networks for
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real-time adaptation (Chen et al., 2020); graph neural networks to simulate interactions with other
agents (agent types) and determine the ad hoc agent’s behavior (Rahman et al., 2021); self-play to
learn a cooperation policy and candidate teammate policies (Fang et al., 2024); sequential and hier-
archical variational auto encoders to model teammates’ changing behaviors (Zintgraf et al., 2021);
and model-based RL methods to learn separate models of the environment and teammates (Xu et al.,
2025). These methods are resource-hungry, requiring substantial computation and training exam-
ples to learn models that are often opaque, limiting interpretability of the system.

Frameworks based on “foundation" models are considered state of the art for various problems
in robotics and AI, and an LLM-based framework has been developed to compute the ad hoc agent’s
actions (Liu et al., 2024). At the same time, it is known that such models can make arbitrary
decisions in novel situations, do not plan, and are more effective when used to generate abstract
guidance that is validated before use (Kambhampati et al., 2024).

This paper builds on our proof-of-concept work (Dodampegama & Sridharan, 2023) that en-
abled an ad hoc agent to reason with domain knowledge and predictive models of other agents in
simple domains. Here we consider a more complex household domain, enabling an ad hoc agent
to leverage an LLM to anticipate high-level future tasks, use logics to jointly plan for current and
future tasks, and use decision-tree induction and an LLM for acquiring previously unknown knowl-
edge from observations and natural language descriptions.

3. Methodology
Figure 2 outlines KAT (Knowledge-based Reasoning and Learning for Ad Hoc Teamwork), our
architecture for an ad hoc agent collaborating with other agents (human, AI). An external task
generator is used to generate a realistic, evolving routine of tasks for any given day (e.g., “make
breakfast", “set up workstation", “prepare lunch"), dispatching tasks one at a time to all agents.
Each agent is unaware of the task generation strategy and starts with no prior knowledge of the
preferences, capabilities, and strategies of other agents, although it expects teammates to collaborate
to complete assigned tasks. Each agent receives information about the current state, and computes
and executes actions to complete task(s). The ad hoc agent determines its action by reasoning with
prior knowledge (Section 3.1) and the actions of other agents predicted by models learned from
runtime observations (Section 3.2). It also prompts an LLM with recent observations and completed
tasks to anticipate future tasks (Section 3.3). It validates and adapts the LLM’s output based on
domain-specific knowledge, and jointly plans actions to achieve the current and anticipated task(s).
In addition, a human (agent) occasionally describes an agent’s actions (e.g.,“Agent 1 cannot put the
cake in the microwave since its door is closed"). The ad hoc agent uses these descriptions to learn
previously unknown domain knowledge in the form of objects, actions, and axioms. Furthermore,
it uses observations obtained during plan execution to learn missing axioms based on decision tree
induction (Section 3.4). We use the example scenario given below to describe KAT’s components
for one ad hoc agent and a human; we consider additional agents during evaluation.

Example 1 [Human-AI agent collaboration scenario]
Consider an AI agent and a human agent collaborating to complete daily household tasks such as
preparing breakfast or setting up the home work-station (see Figure 1). The agents can interact
with the environment through actions that involve moving to places, picking up or placing objects,
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Figure 2: KAT embeds the principles of refinement and ecological rationality to leverage the com-
plementary strengths of knowledge-based and data-driven reasoning and learning.

switching appliances on or off, and opening or closing appliances. Completing a task requires a
sequence of such actions to be computed and executed by members of the team without any direct
communication between them. The ad hoc agent assumes that any teammate will have access to
the same information about domain state, predicts the actions the teammate will execute over the
next few steps, and computes its plan to complete the current task and prepare for the upcoming
task(s). Each ad hoc agent’s prior commonsense knowledge includes relational descriptions of
some attributes of the domain, objects, and human. It also includes axioms governing actions and
changes, e.g., each agent is aware that it cannot hold more than two objects at a time.

3.1 Knowledge Representation and Reasoning

In KAT, any given domain’s transition diagram is described using an extension of action language
ALd (Gelfond & Inclezan, 2013). Action languages are formal models of parts of natural language
for describing transition diagrams of dynamic systems. The domain representation comprises a
system description D, a collection of statements of ALd, and a history H. D has a sorted sig-
nature Σ with basic sorts, and domain attributes (statics, fluents) and actions described in terms
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of these sorts. Basic sorts in our example scenario include object, appliance, ad_hoc_agent,
human, and step (for temporal reasoning), and are arranged hierarchically, e.g., apple is a sub-sort
of food, a sub-sort of graspable, a sub-sort of object. Actions can be agent_actions such as
grab(ad_hoc_agent, object), move(ad_hoc_agent, location1, location2) that are performed by
the ad hoc agent; or exo_actions (exogenous actions) such as exo_grab (other_agent, object),
exo_switch_on(other_agent, appliance) which are performed by other agents, e.g., human or
another AI agent. Statics (fluents) are domain attributes whose values cannot change. Fluents
can be inertial, which obey inertia laws and are changed by the ad hoc agent’s actions, e.g.,
at(ad_hoc_agent, location) is the ad hoc agent’s location; or defined, which do not obey inertia
laws and are not directly changed the by ad hoc agent’s actions, e.g., agent_at(other_agent, location)
is a teammate’s location computed by (say) external sensors. Given a specific Σ, the domain’s dy-
namics are described using axioms such as:

open(A,E) causes opened(E) (1a)

¬at(A,L1) if at(A,L2), L1 ̸= L2 (1b)

impossible grab(A,O) if on(O,E), ¬opened(E) (1c)

where Statement 1(a), a causal law, implies that an agent executing the open(A,E) action causes
an appliance E to be opened; Statement 1(b), a state constraint, implies that an agent (A) cannot
be in two places (L1, L2) at the same time; and Statement 1(c), an executability condition, prevents
the ad hoc agent (A) from trying to grab an object (O) from an appliance (E) that is not open.

The history, H, is a record of statements of the form obs(fluent, boolean, step), which rep-
resent observations, and hpd(action, step), which represent executed actions, at specific steps. H
also includes default statements that are true in the initial state.

To reason with knowledge, a script automatically constructs program Π(D,H) in CR-Prolog,
an extension to ASP that supports consistency restoring (CR) rules. Π(D,H) contains statements
from D and H, inertia axioms, reality check axioms, closed world assumptions for defined fluents
and actions, helper relations such as holds(fluent, step) and occurs(action, step) that imply (re-
spectively) that a fluent is true and an action is part of a plan at a particular time step, and helper
axioms that define goals and guide planning and diagnosis. ASP is based on stable model semantics,
and encodes default negation and epistemic disjunction, i.e., unlike “¬a” that states a is believed
to be false, “not a” only implies a is not believed to be true, and unlike “p ∨ ¬p”, “p or ¬p” is
not tautologous. Each literal is true, false, or unknown, and the agent only believes that which it is
forced to believe. ASP supports non-monotonic logical reasoning, i.e., the ability to revise previous
conclusions, which is essential for agents operating in practical domains with incomplete knowl-
edge and noisy observations. The CR rules allow the agent to make assumptions under exceptional
circumstances to recover from inconsistencies. All reasoning tasks, i.e., planning, diagnostics, and
inference are reduced to computing answer sets of Π subject to some criteria (e.g., minimize costs)
and extracting the action sequence; we do so using the SPARC system (Balai et al., 2013).

Our example scenario is complex, with many objects, containers, and locations, e.g., there can
be ≈ 1025 states with just one ad hoc agent and one human, making it computationally expensive
to compute plans with multiple steps. To support scalability, we build on prior work in our group
on a refinement-based architecture (Sridharan et al., 2019) to enable the ad hoc agent to represent
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Table 1: Attributes used to create the behavior
models of the other agents in VirtualHome.

Description of the attribute

Immediate two previous actions of the agent
Position of the agent (x,y,z)
Orientation of the agent (x,y,z)
Objects associated with the goal
Any objects in the hand of the agent
Any objects in the hand of the remaining agents
Current and previous tasks
Flags (weekday, going to office, guests expected)

Figure 3: FF tree model of human behavior
for the grab_book action in the example sce-
nario from the VirtualHome domain.

and reason at two resolutions. Specifically, a fine-resolution description is defined as a refinement
of a coarse-resolution description, with the agent now able to reason about aspects of the domain
that were previously abstracted away. A common criticism of reasoning methods is that they need
comprehensive domain knowledge, but architectures that embed principles such as refinement have
demonstrated the ability to reason with the available knowledge and revise it incrementally over
time. Also, most of the steps for encoding the knowledge can be automated, and the effort involved
in encoding prior knowledge is much less than that needed to train purely data-driven systems.

3.2 Agent Behavior Models
Since reasoning with prior domain knowledge that is incomplete or inconsistent will lead to poor
performance, KAT enables the ad hoc agent to reason with models that predict the action choices
of other agents that are learned (and revised) rapidly. This capability is achieved by embedding the
Ecological Rationality (ER) principle (Gigerenzer, 2020), which is based on Herb Simon’s original
definition of Bounded Rationality (Simon, 1956) and the algorithmic theory of decision heuris-
tics (Gigerenzer, 2016). ER explores decision making “in the wild", i.e., under open world uncer-
tainty with the space of possibilities not fully known, and characterizes behavior as a joint function
of internal cognitive processes and the environment. In the absence of comprehensive knowledge,
optimal decisions may be unknowable and not just hard to compute, so ER advocates the use of
adaptive satisficing and decision heuristics (e.g., tallying, sequencing, fast and frugal methods) to
ignore part of the information and make decisions more quickly, frugally, and accurately than so-
phisticated methods with many more free parameters. This approach has been shown to provide
better performance than more sophisticated methods in practical applications (Gigerenzer, 2016).

KAT enables the ad hoc agent to select relevant attributes and rapidly learn (and revise) an
ensemble of Fast and Frugal (FF) trees from limited data to predict the behavior of each teammate
(or teammate type). Each FF tree provides a binary choice for a particular action, and the number of
leaves in a tree is limited by the number of attributes (Katsikopoulos et al., 2021). Each level of the
tree contains an exit, allowing the agent to make decisions quickly. Also, these models enable the ad
hoc agents to consider the more informative attributes and stop as soon as a rational option is found.
Figure 3 shows an FF tree learned for a human, and Table 1 shows the attributes used. The initial
version of these trees were constructed from only 1000 traces of other agents’ actions (guided by
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simple hand-crafted policies) and domain states. Consistent agreement (or disagreement) between
observed outcomes and the predictions provided by these behavior models triggers the use of a
particular model for subsequent steps, or leads to the revision of existing model(s), allowing the ad
hoc agent to quickly adapt to changes in the domain or an agent’s behavior.

3.3 Task Anticipation
As stated earlier, there is increasing evidence that LLMs make arbitrary decisions in novel situations.
They are more effective when used as translators between natural and domain-specific languages,
and to generate high-level (generic) guidance that is validated externally before being implemented
by planning subroutines (Kambhampati et al., 2024). Building on these findings, KAT enables an
ad hoc agent to use an LLM to anticipate the high-level future task (e.g., prepare dinner) likely to
be assigned once the current task is done. Recall that in the absence of the LLM, the agents are
informed about the target tasks one at a time. We experimentally demonstrate in Section 4.2 that
jointly planning to complete the current task and anticipated task, e.g., fetch some ingredients from
the fridge for making lunch while fetching eggs for cooking breakfast, improves team performance.
The ad hoc agent uses a combination of three prompting strategies to interact with the LLM:

1. Adopting persona: A specific role or character is assigned to guide the LLM’s responses to
be more (contextually) consistent with the assigned role.

2. Few-shot prompting: The prompt includes a few examples of the expected output in specific
situations, guiding the use of pretrained knowledge.

3. Chain-of-thought (CoT): The prompt includes a step-by-step reasoning process that can be
followed to arrive at an answer, leading to more accurate responses.

A ‘system message’ guides the LLM to adopt the persona of a household assistant and to complete
the partially completed routine by selecting potential future tasks from the available list of tasks in
the example scenario within the VirtualHome domain. With the ‘few-shot’ prompting approach, the
prompt includes two task routines randomly chosen from previous days. Next, CoT prompting is
used to explain the reasoning behind each task in the few shot examples. Such explanations can
be provided manually by the system designer or generated by the LLM. The system message, few-
shot examples with CoT explanation, and the current query (i.e., partially completed or empty task
routine for the day) are provided as input to the LLM.

The LLM’s output to a prompt is parsed by an external validator to check whether the tasks
are feasible and in a reasonable order. Specifically, the validator compares the LLM’s output with
domain- and task-specific contextual features extracted from existing knowledge and recent obser-
vations to eliminate tasks that are invalid or irrelevant, and reorder tasks according to the human
preferences. For example, the ad hoc agent will prioritize preparation of the workstation over pack-
ing a lunch box when the human is working from home. Since the list of validated tasks can change
over time, KAT enables the ad hoc agent to consider one anticipated task and the current task as the
joint goal for which a plan is to be computed.

3.4 Knowledge Acquisition
Since making decisions based on incomplete or inconsistent knowledge can lead to ineffective col-
laboration, KAT enables the ad hoc agent to incrementally acquire domain knowledge, reduce am-
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biguity, and support reliable decision making. The agent acquires knowledge in the form of objects,
actions, and axioms using two strategies: (i) it learns from cues provided by a human during task
execution; and (ii) it explores actions in different states, identifying and correcting inconsistencies.
Learning from human cues. When an ad hoc agent receives a cue from the human, e.g., “Agent
1 cannot put the cake inside the microwave since the microwave’s door is closed", it automatically
prompts the LLM to output candidate axioms by combining a predefined system message with two
examples of input and expected output, the structure of the three types of axioms (e.g., “a causes
f if p"), and the query based on the cue (message 1 in Figure 2). The LLM’s output is parsed
using regular expressions to discard any output that does not match the expected format of axioms.
From the LLM’s output that passes this check, the agent extracts actions (verbs), objects, and action
preconditions and effects. If there are any new objects that are not already defined in the current
ASP program (Π(D,H)), the LLM is asked to assign a sort label to these objects by prompting it
(message 2 in Figure 2) based on a predefined message template, existing sorts in Π(D,H), and the
new objects. If multiple basic sort labels are returned for an object, the lowest category in the sort
hierarchy is used to add the new object to Π(D,H).

Next, the agent examines Π(D,H) to check whether the action verb (e.g., grab) from the LLM’s
output is already defined. If an action that semantically matches this action verb exists in Π(D,H),
the agent retrieves it; this action may exhibit the same behavior as the one in the cue but have a
different name, e.g., pick(A,O) instead of grab(A,O). The agent performs strictly controlled verb
synthesis with WordNet (Miller, 1995) to retrieve synonyms for the action verb from the cue and
checks the synonyms with the Σ of Π(D,H). If a match is found, the action verb from the LLM
output is replaced by the existing action in Σ. Also, the sorts of the arguments of the action extracted
from the human cue may differ from those of the action in Π(D,H), e.g., they may be subsorts or
parent sorts. If the sorts of arguments of the action in Π(D,H) are parent sorts of those in the cue,
the agent uses the existing action as is; if not, the agent lifts the sort of the existing action’s argu-
ments to the new sorts and updates Π(D,H). If the extracted action (or its equivalent) does not exist
in Π(D,H), the agent adds it with the lowest (i.e., most specific) sort labels for arguments. This
process ensures that we do not introduce the same action multiple times with different sorts. This
procedure is also repeated for literals, and the actions and literals are used to convert the extracted
axioms to the appropriate format, e.g., ‘a causes l’ converted to ‘holds(l,I+1) :- occurs(a,I)’), re-
placing the ground sorts with variables and ensuring consistency between head and body. The axiom
is then added to Π(D,H) if it does not exist.
Learning from observations. The second strategy enables the ad hoc agent to refine its knowledge
based on observations obtained during plan execution. It extends prior work in our group for ac-
quiring new knowledge in the context of scene understanding tasks (Mota et al., 2021), to ad hoc
teamwork by combining decision tree induction with knowledge-based reasoning.

1. The agent selects an action aI from the newly learned set of actions A, and an initial state
of the environment SI . It simulates the execution of aI in SI in its current domain to collect
information about the outcomes (e.g., end state, an inconsistent outcome).
2. An expected outcome’s absence indicates the absence of an executability condition; any
additional effects indicate missing causal law(s). If all observations match expectations for
different actions and states, the current knowledge is considered to be comprehensive.
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Figure 4: Part of the decision tree created to learn missing executability conditions.

3. The agent responds to an inconsistency by simulating the execution of aI in different states,
extracting from the answer set and initial state all those fluent literals that have an object constant
that is also in aI . These collected literals form part of the training examples.
4. In the training examples, the ground terms in literals are replaced by variables, and the dataset
is reformatted with the fluent literals as features and the presence of absence of inconsistency
as the class label. Each training example then records the presence or absence of a fluent literal,
and the presence or absence of an inconsistency, as a binary value.
5. Separate decision trees are constructed for causal laws and executability conditions, with the
action as the root node, and nodes are split using features that have not been used before and are
likely to result in the highest reduction in entropy.
6. Candidate axioms are generated by traversing the learned trees from the root to the leaves
using only those nodes that agree with their class label up to a threshold level (90%) and contain
at least a minimum percentage (2%) of the dataset.
7. Only candidate axioms that have sufficient support among the training examples (90% in our
experiments) are retained. Also the decision tree induction process is repeated multiple times
over the training data to explore different subsets of data. Only axioms that are retained over
multiple such repetitions are lifted to the more general form and added to Π(D,H).

Figure 4 shows part of a decision tree generated by this process, with the ad hoc agent learning the
following two executability conditions:

−occurs(switchon(R,E), I)←holds(on(E,L), I), not holds(at(R,L), I), (2a)

loc(L), agent(R), appliance(E).

−occurs(switchon(R,E), I)←holds(opened(E), I), agent(R), appliance(E). (2b)

which imply that an agent cannot switch on an appliance if it is not in the same location or if the
appliance’s door is open. Although the learning strategy is described above in the contact of learning
new objects, actions and axioms, it can be used to learn new literals (relations) too.

4. Experimental Setup and Results

We experimentally evaluated the following hypotheses regarding our architecture’s capabilities:

H1 Reasoning with prior knowledge and the rapidly-learned behavior prediction models improves
performance and promotes scalability;
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H2 Using LLM-based anticipated tasks as joint goals improves performance compared with plan-
ning for one task at a time;

H3 Incrementally-updated prompts and validators improve task anticipation capability of the
LLM and the team’s performance;

H4 Using the LLM to directly output a sequence of low-level actions to complete assigned tasks
results in poor performance;

H5 KAT enables the ad hoc agent to accurately learn unknown objects, actions, and axioms; and

H6 Reasoning with incrementally learned knowledge improves the performance of the team.

We evaluated these hypotheses in the VirtualHome domain. In each episode, the AI ad hoc agent(s)
and a human agent collaborated to complete household tasks. We recorded the number of steps
(plan length) and the task completion time as the performance measures. All prompts to the LLM
were through OpenAI GPT4o mini API with default parameters (e.g., temperature = 1.0).

4.1 Experimental Setup
In our experiments, the human was modeled as a simulated entity whose action choices were based
on an ASP program that considered the human’s prior knowledge and runtime observations; the
human did not reason with models predicting teammates’ actions. Also, the human’s ASP program
encodes certain preferences, priorities, and capabilities that are not initially known to the ad hoc
agents but may be captured over time in the models that the ad hoc agents learn in order to predict
the behavior of the human. The sequence of tasks generated by the task generator were assigned to
the agents over time; the agents were not aware of the complete sequence and received one task at
a time. The human was assigned the same goal as the ad hoc agent(s). All agents received the same
observations of the domain at each step, which they used to plan their respective actions. There was
no direct communication between them.

When an ad hoc agent equipped with KAT received a task, it prompted the LLM (Section 3.3).
The anticipated tasks were validated and mapped to ASP literals, with the next anticipated task and
current task set as joint goals for this agent. During planning, the ad hoc agent also used the learned
behavior prediction model to predict each teammate’s actions for two future steps (Section 3.2).
These predictive models were built using only 1000 examples of prior traces of actions and domain
state. The agent initially assigns one learned model to each teammate but uses information from
subsequent steps to incrementally revise models for each teammate based on their observed behav-
ior. Predicted actions from the models are then mapped to exogenous actions that are added to the
ASP program along with initial state information and refined sorts. The ASP program of the ad hoc
agent included additional axioms for reasoning with the predicted actions of each teammate. As a
result, the ad hoc agent’s plan anticipated preconditions of some intermediate steps to be satisfied
by a teammate’s actions, even though the teammate did not always execute that action. The ad hoc
agent hence had to respond to unexpected action outcomes and domain states.

To evaluate H1 and H2, in Exp1, we randomly selected 100 task routines sampled from prede-
fined sequences and measured the ability of a team (human and an ad hoc agent) to complete these
tasks. Performance measures were the number of steps and time taken. We used three baselines:
• Base1: LLM for anticipating future tasks, but no behavior models to predict human’s actions.
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• Base2: no LLM to anticipate future tasks, but behavior models to predict the human’s actions.
• Base3: did not use LLM for task anticipation or behavior models to predict human’s actions.
In the absence of a framework for AHT that supported all capabilities of KAT, we chose these base-
lines to conduct ablation studies that evaluated the contribution of each key component of KAT.
Since the actual time taken and the number of actions required to complete tasks can vary substan-
tially based on the task, the average of these values over the individual trials may not be meaningful.
We instead ran paired trials and computed performance measure values for the baselines as a frac-
tion of these values for KAT in each trial. We then reported the average of these ratios.

For evaluating scalability in H1, we increased the team size by introducing additional ad hoc
agents, with three agents (one human, two ad hoc agents) and four agents (one human, three ad
hoc agents) collaborating to complete tasks (as in Exp1). These different configurations would
normally make collaboration increasingly challenging, e.g., with just two agents the domain has
≈ 1025 possible states, and this number increases exponentially with the number of AI agents. We
then measured the number of steps and time taken by the agent teams to complete the tasks.

To evaluate H3, in Exp2, we computed the precision and recall of the tasks anticipated by
the LLM, before and after applying the validator, over the 100 task routines. We also computed
the precision and recall of a simple statistical model that replaced the LLM and anticipated the
agent’s next task based on past experience. Further, in Exp3, we randomly selected 20 task routines
and recorded the LLM’s performance with and without prompting methods, using four baselines:
Base4: no prompting strategy or validator; Base5: few-shot prompting but no validator; Base6:
CoT prompting but no validator; and Base7: validator but no prompt-engineering.

For evaluating H4, we conducted experiment Exp4, in which we created an architecture that
used the LLM to directly output sequences of actions for specific tasks (Base8). Specifically, our
prompt included details of actions available in our example scenario in VirtualHome, their intended
purpose (from ASP program, e.g., move(agent, location): move the agent to an adjacent location).
We also supplied the LLM some Action Feasibility Rules:
• Movement Limitation (critical): must only move to adjacent locations defined by the next_to

relationships. Always check adjacency before predicting a move.
• Object Location: must be in the same location as an object to act on it (e.g., grab, put).
• Carrying Limit: cannot hold more than two objects. When holding two objects, actions like

open, close, switch-on, or switch-off require you to put at least one object down first.
• Appliance Safety: for safety, you should not open appliance doors when they are switched on.
• Avoid Conflict: if a human is holding an object, they will handle all actions with the object. Do

not attempt to grab or interact with this object. Instead, focus on other parts of the goal.
We included information about adjacent places in the domain emphasizing the fact that the agent
can only move between the defined adjacent places. The LLM also had access to the current world
state, including the location of the agents, objects, and appliances, each appliance’s state, and in-
formation about the objects held by the agents. The problem specification also described the task
to be performed; the immediate previous actions of the human and the ad hoc agent; any specific
information to be considered on any given day (e.g., human working from home). Additionally, the
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prompt included a detailed example of selecting an action, and asked the LLM to generate an action
sequence for achieving the assigned goal and specify next action to execute.

The LLM’s action choice was assigned as the ad hoc agent’ action. As a recovery mechanism,
we corrected errors in the LLM output up to three times per trial. For example, if the LLM’s ac-
tion involves grabbing an object without moving to the appropriate location, we provided feedback
explaining why this choice was incorrect and allowed the LLM to predict another action for that
step. We measured the performance of the agent team to complete the previously selected 100 task
routines. The performance measures were the number of steps and time taken to complete the tasks.

In Exp5, we introduced another ad hoc agent with an incomplete knowledge base to the two
agent team (ad hoc agent and human). The new agent’s ASP program included only a subset of the
objects (17/31), actions (4/7), and axioms (6/9 causal laws, 16/26 executability conditions). This
corresponded to the absence of around 40 − 45% knowledge. We made sure that this agent had
enough initial knowledge to perform some basic activities, while also withholding key knowledge
to create gaps that limited the agent’s ability to complete tasks. During task execution, the human
agent periodically describe actions of the knowledgeable ad hoc agent to the ad hoc agent with
missing knowledge. This agent then used the procedure described in Section 3.4 to process these
descriptions into ASP sorts, actions and axioms with the help of an LLM and added the validated
information to its knowledge base. At the end of each episode, it also used decision tree induction to
learn new axioms. We then evaluated the ad hoc agent’s ability to learn missing knowledge across
10 episodes, with each episode randomly selecting from five different task sequences and each
sequence consisting of four tasks. Similar to previous experiments, task sequences were generated
by the task generator and provided to the agent one at a time. However, we intentionally omitted
the future task anticipation algorithm to prevent its influence on knowledge acquisition capabilities.
We recorded the number of objects, actions, and axioms learned in each trial, and the precision and
recall of learning these axioms compared with a complete ASP program (ground truth).

In Exp6, we extended each episode from Exp5 to include three consecutive runs. The first
run in an episode had the same initial knowledge as in Exp5, but the subsequent two runs built
on the knowledge for a potentially different sequence of tasks. This process was repeated for the
10 episodes; we recorded the objects, actions, and axioms learned after each run and episode, and
computed precision and recall as the performance measures.

To evaluate H6 in Exp7, we ran 20 trials with and without the learned axioms, recording the
number of steps (plan length) and the time taken to complete the assigned task(s).

4.2 Experimental Results

Table 2 summarizes the results of Exp1. When the ad hoc agent reasoned with anticipated tasks
and predicted actions, it provided the best performance with lowest number of action steps and least
amount of time taken to complete task routines. The accuracy of the human behavior prediction
models learned by the ad hoc agent was 85%, i.e., it makes errors, but it supports rapid learning and
revision. Also, reasoning with prior knowledge and the output of these predictive models signifi-
cantly improves performance. While other algorithms may achieve higher predictive accuracy, we
chose FF tree models because they are simple, easy to understand, and can be revised rapidly. When
the agent used task anticipation but not the behavior prediction models (Base1), the number of steps
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Table 2: Average number of steps and time taken to complete
task routines; values for baselines computed as a fraction of
these values for KAT in each trial; for comparison, the aver-
age absolute values are 26.8 steps and 361 seconds for KAT.

Architecture Steps Time(s)

KAT (anticipate tasks, predict actions) 1.0 1.0
Base1 (anticipate tasks) 1.1 1.1
Base2 (predict actions) 1.3 1.2
Base3 1.4 1.4
Base8 (LLM predict low-level actions) 1.5 1.5

Table 3: Average number of steps
and time taken by Team1, Team2 and
Team3 to complete the task routines,
with performance measure values for
Teams 2-3 computed as a fraction of
the values for Team 1 in each trial.

Team Steps Time(s)

Team1 1.0 1.0
Team2 0.8 0.9
Team3 0.7 0.8

and time taken increased; not considering the teammates’ actions may lead the agent to waste time
in executing redundant actions. These results emphasize the importance of the behavior prediction
models, supporting hypothesis H1.

When the ad hoc agent used the behavior prediction models but did not anticipate future tasks
(Base2), performance worsened, with a further increase in the number of steps and the time taken
to complete tasks. Planning jointly for the current and anticipated tasks saved time and effort. For
example, when the agent visited the bedroom to retrieve a board game for the guests, it also picked
up bottles of wine from the cellar on the way instead of making two separate trips. These results
support H2. Also, when the ad hoc agent did not use task anticipation or the behavior prediction
models (Base3), the performance worsened further. These results support H1 and H2. Finally, using
the LLM to directly compute a sequence of low-level actions (Base8) resulted in the worst observed
performance. All results were statistically significant with p < 0.0001. These results support H4.

Next, Table 3 summarizes the performance of Team1 (human, one ad hoc agent), Team2 (hu-
man, two ad hoc agents) and Team3 (human, three ad hoc agents) in completing the same set of
100 task routines. As the number of ad hoc agents increases, task completion becomes more ef-
ficient: Team2 outperformed Team1 by requiring fewer steps and less time to complete the tasks,
while Team3 showed further improvements over Team2. These results emphasize the importance
of efficient collaboration and demonstrate the scalability of the architecture to multiple agents, sup-
porting H1. Once again all the results were statistically significant with p < 0.0001. The observed
performance was primarily due to design choices in KAT to enable each ad hoc agent to reason
independently and efficiently using domain knowledge and learned models.

Table 4 shows the results from Exp2, where we computed the precision and recall values of
the tasks anticipated by the LLM before and after applying the validator. We observed marked
improvement in precision after applying the validator to the LLM’s output. The errors in the LLM’s
outputs were substantially reduced by the validator. The recall values do not change substantially
as the validator did not introduce new tasks; it only reordered the tasks that are out of order and
removed irrelevant tasks. On the other hand, the simple statistical model that anticipated future
tasks based only on past experience resulted in precision and recall of 0.75 and 0.76 respectively.
These results indicate that using just the historical data is insufficient for task anticipation, although
performance is comparable with the raw output obtained from the LLM; future work will explore
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Table 4: Precision and recall values of the anticipated tasks with and without the LLM and the
validator. A simple statistical model is not good enough and the validator plays an important role.

Architecture Precision Recall

Simple statistical model 0.75 0.76
LLM without validator 0.78 0.76
LLM with validator 0.99 0.78

Table 5: Average number of steps and time taken by
the team (human, ad hoc agent) to complete tasks with
prompting strategies and/or validator; values of perfor-
mance measures for baselines computed as a fraction
of values for KAT in each trial, with the average abso-
lute values of 27.5 steps and 372.7 seconds for KAT.

Architecture Steps Time(s)

KAT (all prompting, validator) 1.00 1.00
Base4 (no prompting, no validator) 1.21 1.15
Base5 (few-shot, no validator) 1.17 1.18
Base6 (CoT, no validator) 1.16 1.16
Base7 (no prompting, validator) 1.05 1.04

Figure 5: Average number of objects,
actions, axioms learned in three consec-
utive runs, averaged over 10 episodes.

the use of the simpler model in more complex domains. Using the validator to correct the LLM’s
output based on prior knowledge and experiences leads to better results, supporting H3.

Table 5 shows the results from Exp3, which explored the use of different prompting strategies
and the validator with the LLM to anticipate future tasks (Section 3.3). We again observed a signif-
icant improvement in performance, e.g., a lower number of steps and time to complete tasks with
the external validator and a combination of prompting methods. In particular, using the validator to
adapt the LLM’s output to the domain had a significant impact on performance, further supporting
H3. These results were statistically significant for Base4, Base5 and Base6 with p < 0.001. For
Base7 the results were mixed; the reduction in steps was statistically significant (p < 0.05), while
the reduction in time was not (p = 0.09). This outcome is consistent with expectations since Base7
used the validator; it emphasizes the importance of the validator and the need for further exploration
of more complex scenarios to determine the importance of the prompting strategies.

Results of Exp5 are summarized in Table 6. We observed high precision and recall for learning
the missing axioms. Figure 5 summarized the results of Exp6 with three consecutive runs in each
of 10 episodes. By the end of the first run, the agent successfully learned 4-5 of 14 missing objects,
all three missing actions, 1-2 of three missing causal laws, and 6–7 of 10 missing executability
conditions. After three runs, the values increased to 8–9 objects, 2–3 causal laws, and 9–10 exe-
cutability conditions. The steady increase in number of objects, actions, and axioms, along with the
high precision and recall, indicated the agent’s ability to reliably learn new knowledge, supporting
H5. Although the LLM occasionally provided incorrect ASP formats, these errors occurred rarely;
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Table 6: Average precision and recall of learned
axioms in 30 runs over 10 episodes; previously
unknown axioms were learned accurately.

Axiom type Precision Recall

Causal laws 0.96 1.0
Executability conditions 1.0 1.0

Table 7: Average number of steps and time
taken by team to complete task sequences repre-
sented as a fraction of these values for baseline.

Architecture Steps Time(s)

With learned axioms 0.76 0.84
Without learned axioms 1.00 1.00

most of the time the LLM output was correct as its use was limited to straightforward tasks and the
mechanisms described in Section 3.4 were sufficient to account for these errors.

Table 7 summarizes the results of Exp7, which evaluated the impact of the learned knowledge
on the team’s ability to complete tasks. We ran paired trials with and without the learned axioms
and computed performance measure values for the former as a fraction of the values for the latter.
Reasoning with the learned objects, actions, and axioms substantially improved performance. In the
absence of the learned knowledge, at least one ad hoc agent often could not compute valid plans to
complete the tasks, and could not contribute to the team’s performance. The team was essentially
operating with one fewer member in such cases, with the other two members executing additional
actions. The significant low number of steps and time (p < 0.0001) emphasize the importance of
learning previously unknown knowledge, thus supporting H6.

4.3 Execution Traces
Knowledge Acquisition: We provide some execution traces as a qualitative evaluation of H5. Con-
sider the situation in which the ad hoc agent was unaware of the action grab(agent, object) that
refers to an object being picked up. When the human provided the cue, “Agent2 grabbed the apple",
the agent used the process described in Section 3.4 to obtain the following output from the LLM:

grab(agent2, apple) causes in_hand(agent2, apple). (3)

From this LLM output, the agent first extracted grab(agent2, apple). Since apple is not already
defined in its current knowledge base (ASP program), the agent sent this to the LLM (message 2 in
Figure 2) to receive the output apple: food, which states that apple belongs to the sort food. The ad
hoc agent then generalized this action to grab(agent, food) based on the LLM output, and added the
action to its knowledge. Further, the agent also learned the causal law:

holds(in_hand(R,F ), I + 1)←occurs(grab(R,F ), I), agent(R), food(F ). (4)

In subsequent runs, the ad hoc agent applied the grab action to food items, but remained unaware
that this action was applicable to other objects such as a book or a cellphone. As a result, it did not
contribute to tasks such as preparing the workstation. However, since the agents executed tasks as a
team, the human description of the execution of grab(agent,book) by another agent enabled the ad
hoc agent to generalize the action to grab(agent, graspable) and update the causal law:

holds(in_hand(R,G), I + 1)←occurs(grab(R,G), I), agent(R), graspable(G). (5)

The agent could have also learned the more general version of this axiom (Statement 5) over time.
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Once the agent learned above causal laws, it was able to used them to compute plans and com-
plete tasks even though it was unaware of all the executability conditions for this action. Later
the human provided the cues “Agent2 cannot grab the plate since plate is on the kitchen_table and
Agent2 is not at kitchen_table" and “Agent2 moved to kitchen_table". The agent used the LLM to
translate these cues to the following executability condition and causal law:

− grab(agent2, plate) if on(plate, kitchen_table), not at(agent2, kitchen_table). (6a)

move(agent2, kitchen_table) causes at(agent2, kitchen_table). (6b)

The ad hoc agent used this output to learn the following axioms:

−occurs(grab(R,G), I)←holds(on(G,L), I), notholds(at(R,L), I), agent(R), (7a)

location(L), graspable(G).

holds(at(R,L), I + 1)←occurs(move(R,L), I), agent(R), location(L). (7b)

Since Statement 7(b) was already in its knowledge base, the ad hoc agent only added Statement 7(a)
to its knowledge base. These results support H5, i.e., that the agent is able to incrementally learn
and generalize the learned knowledge to improve task completion performance.

Task Anticipation: We also provide some execution traces as a qualitative evaluation of H2, H3 and
H4. Figure 6 shows an execution example where the ad hoc agent used the LLM to anticipate future
tasks with and without the prompting strategies and validator. The example was set on a weekday
where the human was working from home and no guests were expected. The correct task routine in
this context was: Prepare breakfast, Prepare home work-station, Prepare coffee, Prepare lunch.

When the ad hoc agent queried the LLM without the prompt engineering techniques or validator
(Section 3.3), the anticipated task list was different from the expected output. The prompt to the
LLM without using the prompt engineering strategies is shown in Figure 6. The LLM output was
[Prepare breakfast, Prepare coffee, Prepare home work-station, Pack bag]. This output failed to
align with the human preferences and priorities because: (a) making coffee was assigned higher
priority than setting up the workstation, which would delay when the human started work and the
coffee would not be hot when needed; and (b) it was not necessary to pack the bag since the human
was working from home. On the other hand, when the ad hoc agent used the prompt engineering
strategies and the validation strategy, the prompt to the LLM was automatically generated while
incorporating context, as described in Section 3.3. The LLM’s output was [Prepare breakfast,
Prepare home work-station, Prepare coffee, Prepare lunch]. This matched the expected routine. i.e.,
making breakfast and setting up the workstation were considered high priority tasks, and irrelevant
tasks such as pack bag were filtered out by the validator. These results demonstrate the importance
of using a combination of prompting techniques and the external validator, supporting H3.

We observed similar situations when extending the setup to three agents, one human and two ad
hoc agents, collaborating on a weekend when guests were expected; the correct task routine was:
Prepare breakfast, Prepare table for guests, Prepare lunch, Clean dishes. When the first ad hoc
agent queried the LLM with the prompting strategies but without the validator, the anticipated task
list by the LLM was Prepare breakfast, Prepare table for guests, Prepare lunch, Serve snacks. For
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Figure 6: Execution example: using LLM without prompting strategies or external validator causes
conflicts during execution, having a negative impact on performance.

the second ad hoc agent the LLM output was Prepare breakfast, Prepare table for guests, Prepare
lunch, Serve snacks, Clean dishes. When the validator was used, the outputs to both agents were
refined by incorporating context. Since the human usually did not require snacks after lunch, the
task Serve snacks was removed. For the first agent the refined task list was Prepare breakfast,
Prepare table for guests, Prepare lunch. For the second agent the task list was Prepare breakfast,
Prepare table for guests, Prepare lunch, Clean dishes; since the Clean dishes task was a defined task
in this domain, it was retained by the validator. This example further demonstrates the importance
of using the validator and support H3.

Figure 7 compares two plans executed by a team comprising a human and an ad hoc agent
for completing a different set of tasks: [Prepare breakfast, Prepare activities, Serve snacks, Clean
kitchen], with and without the behavior prediction models (Section 3.2). In the first plan, when the
ad hoc agent used the behavior prediction model to predict the future actions of the human, the team
successfully completed all tasks for the given day in just 28 steps. On the other hand, when the ad
hoc agent did not use behavior prediction models, it often selected the same actions as the human
for any particular task, leading to unnecessary delays in completing the tasks. For example, in the
second plan the agent frequently selected the same action as the human—simultaneously picking up
the cupcake, candy bar, and cutlets, introducing redundant behavior and prolonging task execution.
As a result, the overall plan was extended to 34 steps. These results demonstrate that using the
behavior prediction models enables the ad hoc agent to coordinate efficiently by avoiding action
conflicts with the human. This further supports H2.
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Figure 7: Execution trace for task routine: [Prepare breakfast, Prepare activities, Serve snacks,
Clean kitchen]. When an ad hoc agent is not allowed to predict and reason about the human’s
actions, it may choose to execute same action(s) as the human, leading to longer plans.

Figure 8: Execution example: using LLM to generate low-level actions results in poor performance.

When the ad hoc agent used the LLM to directly generate action sequences for specific tasks
(Base8), prompts were automatically constructed following the procedure described in Section 4.1.
Figure 8 shows the LLM output when performing the task series [Prepare breakfast, Prepare home
work-station, Prepare coffee, Prepare lunch]. The selected action move(agent, living room desk)
violated the ‘Movement Limitation (Critical)’ rule in ‘Action Feasibility Rules’ (Section 4.1), which
stated the critical constraint that an agent can only move from a location to an adjacent location.
This example demonstrates that the LLM may not respect constraints even when they are provided
as input, and highlights that an LLM is not designed for computing plans for non-trivial tasks;
using an LLM to directly output a sequence of low-level actions to complete tasks can lead to poor
performance, which supports hypothesis H4.

Source code and additional results for our core architecture are in our open-source reposi-
tory (Dodampegama & Sridharan, 2025b); for code and results related to knowledge acquisition,
please see (Dodampegama & Sridharan, 2025a).

5. Conclusions
This paper described KAT, an architecture for Ad Hoc Teamwork (AHT) that enables an AI agent
to collaborate with other agents (human, AI) in complex domains without prior coordination. KAT
integrates the principles of refinement, ecological rationality, and interactive learning, enabling
the agent to: automatically identify and reason with relevant information; effectively leverage the
generic knowledge encoded in an LLM for high-level task anticipation; rapidly learn models pre-
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dicting the action choices of its teammates; perform non-monotonic logical reasoning with prior
knowledge and the behavior prediction models to jointly plan and execute actions to achieve the
current and anticipated tasks; leverage a LLM to translate natural language descriptions of action
outcomes into formal ASP representations of previously unknown objects, actions, and axioms; and
use decision tree induction to incrementally learn and revise axioms based on observations. Based
on experiments in a realistic, physics-based simulation environment, we demonstrated the architec-
ture’s capabilities compared with various baselines, highlighting the significance of each component
of our architecture, and the promising ability to scale to additional agents. Future work will extend
this approach to incorporate a human controlled avatar in the VirtualHome simulation environment,
and to physical robots collaborating with humans in AHT settings.
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