
Advances in Cognitive Systems 12 (2025) 1–14 Submitted 8/2025; published X/20XX 

 

 

© 2013 Cognitive Systems Foundation. All rights reserved. 

 

Integrating Symbolic Natural Language Understanding and Language 

Models for Word Sense Disambiguation 

 

Kexin Zhao KEXINZHAO2029.1@U.NORTHWESTERN.EDU 
Ken Forbus FORBUS@NORTHWESTERN.EDU 

Qualitative Reasoning Group, Northwestern University, 2233 Tech Drive, Evanston, IL 60208 USA 

Abstract 

Word sense disambiguation is a fundamental challenge in natural language understanding. Current 

methods are primarily aimed at coarse-grained representations (e.g. WordNet synsets or FrameNet 

frames) and require hand-annotated training data to construct. This makes it difficult to 

automatically disambiguate richer representations (e.g. built on OpenCyc) that are needed for 

sophisticated inference. We propose a method that uses statistical language models as oracles for 

disambiguation that does not require any hand-annotation of training data. Instead, the multiple 

candidate meanings generated by a symbolic NLU system are converted into distinguishable 

natural language alternatives, which are used to query an LLM to select appropriate interpretations 

given the linguistic context. The selected meanings are propagated back to the symbolic NLU 

system. We evaluate our method against human-annotated gold answers to demonstrate its 

effectiveness. 

1.  Introduction 

Word sense disambiguation is one of the fundamental challenges in natural language 

understanding. When humans encounter an ambiguous word in a sentence, we can easily use 

context to determine the intended meaning. However, AI systems often struggle with such tasks, 

especially when dealing with fine-grained semantic distinctions that go beyond basic category 

identification. 

Many current disambiguation approaches focus on the coarse-grained level, such as 

identifying broad semantic frames or synset categories (Navigli, 2009). While they perform well 

in basic language processing tasks, they are insufficient when deeper semantic understanding is 

required. Fine-grained disambiguation, which identifies subtle differences within the same 

semantic category, is still mostly unsolved because annotated training data is limited and making 

precise semantic distinctions is inherently difficult (Navigli, 2009). For example, for the sentence 

“The traffic light turned yellow,” the verb “turn” can be easily identified as describing a change, 

but fine-grained disambiguation must determine whether this represents an external or an internal 

change. 

Current methods face a core trade-off. Symbolic approaches offer structured and interpretable 

outputs but have difficulty handling linguistic variation and flexible contexts. Neural approaches 

manage context effectively but produce opaque decisions and lack the structured representations 

needed for advanced reasoning. Both approaches typically depend on large amounts of hand-
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annotated training data, making fine-grained distinctions especially costly to handle.  For example, 

the NextKB ontology1 we use has over 80,000 concepts and 20,000 relations.  Creating a training 

set for it would be a massive undertaking. 

This paper presents a hybrid approach that combines the complementary strengths of 

symbolic natural language understanding systems and large language models. Our work was 

inspired by the idea that if a formal reasoning system can generate natural language 

representations of its reasoning and outputs, then this creates a powerful capability that the system 

can communicate with Large Language Models using natural language as their API (Shepard, 

2025). Our method uses symbolic systems to generate structured candidate meanings and take 

advantage of the contextual understanding ability of large language models to select appropriate 

interpretations, without relying on hand-annotated training data. The approach achieves consistent 

disambiguation accuracy at both coarse and fine-grained semantic levels, demonstrating the 

effectiveness of integrating symbolic and neural methods for word sense disambiguation. 

2.  Background 

2.1  CNLU 

Companions Natural Language Understanding (CNLU; Tomai & Forbus, 2009) is a rule-based 

semantic parser designed to process natural language as part of the Companions cognitive 

architecture (Forbus & Hinrichs, 2017). As shown in Figure 1, the system builds upon a version 

of Allen’s (1994) TRAINS parser, modified so that it can query the knowledge base dynamically 

and call on other reasoning services during the parsing process. To handle semantic interpretation, 

 
1 https://www.qrg.northwestern.edu/nextkb/index.html. 

 
 

Figure 1. CNLU overall architecture. 
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CNLU maps linguistic input to the OpenCyc ontology through FrameNet as a bridge. The system 

uses Discourse Representation Theory (Kamp & Reyle, 1993) to process sophisticated linguistic 

phenomena including complex conditionals, quantification, quotation, and counterfactual 

statements. It converts everyday text into structured representations that computers can use for 

reasoning. The system uses a symbolic approach to interpret language, applying grammar rules 

and a large scale lexicon from the knowledge base to analyze its meaning. CNLU breaks down 

input text into logic-based semantic structures with precise and explicit meaning, making it easier 

for automated systems to reason with the output. One major advantage is that humans familiar 

with CNLU’s ontology can easily read and understand what the system produces. Figure 2 shows 

an example of an CNLU generated the structured representation for the phrase “my parents.” 

Here, symbols with numerical suffixes such as “parent4172” are automatically generated unique 

discourse identifiers that the system assigns to distinguish between different entities. 

 

CNLU creates semantic representations that are much more detailed and structured than 

standard resources like WordNet or FrameNet2. It generates semantic interpretations that are 

grounded in the NextKB ontology, which is a superset of the OpenCyc ontology. The system 

identifies complex and subtle relationships between words, categorizes various types of concepts, 

and recognizes the corresponding semantic constraints. This provides a solid foundation for 

complex language understanding and reasoning tasks, though it also makes the processing more 

challenging. When CNLU encounters words or phrases with multiple possible meanings, it 

generates candidate interpretations for each ambiguity. These candidates are organized into 

choice sets, with each option representing a different way to understand the meaning. The system 

keeps all possibilities open until it can gather enough context to make final decisions. Therefore, 

since CNLU works with such a rich and complex semantic space, accurate word sense 

disambiguation remains a significant challenge. 

2.2  Coarse-Grained vs. Fine-Grained 

Word sense disambiguation can work at different levels of detail (Navigli, 2009). Coarse-grained 

disambiguation focuses on making broad distinctions between word meanings. It typically works 

at the level of semantic frames, like those found in WordNet or FrameNet. For example, the word 

 
2 https://framenet.icsi.berkeley.edu/ 

 
 

Figure 2. CNLU generated representation for the phrase “my parents.” 
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“run” can be disambiguated into several clear categories: self-motion (e.g. the children run 

home), operation (e.g. a computer program runs), or leadership (e.g. someone runs for office). 

These distinctions are relatively easy to understand and separate from each other. Most existing 

disambiguation systems work at this coarse level because the categories are well-defined and 

training data is available. On the other hand, fine-grained disambiguation goes much deeper. It 

makes subtle distinctions within the same semantic frame or category. While coarse-grained 

systems might identify that “run” refers to self-motion, fine-grained systems would further 

specify what type of motion is involved, who runs, and what is the purpose. Knowledge bases like 

OpenCyc and NextKB provide these detailed semantic distinctions that go far beyond what 

FrameNet offers. For example, as shown in Figure 4, for the word “turn,” both FrameNet and 

NextKB will provide one semantic frame as Undergo_change, but NextKB can further distinguish 

between different types of change within the same frame.  

The difference between coarse and fine-grained disambiguation approaches affects what kind 

of reasoning systems can do. Coarse-grained representations work well for basic language 

understanding tasks. They can handle common disambiguation problems and provide reasonable 

semantic interpretations. Fine-grained representations enable more sophisticated reasoning 

because they capture subtle differences in meaning that matter for complex inference tasks. For 

example, skiing versus snowboarding both fit within FrameNet’s self-motion frame, but they 

require different equipment and skills. Fine-grained disambiguation faces unique challenges 

because, unlike coarse-grained approaches, there are fewer available resources and training 

datasets for it. The semantic distinctions are often too nuanced and require deeper understanding 

of context and world knowledge. However, systems that can perform fine-grained disambiguation 

have access to much richer semantic information for reasoning and learning. 

3.  Method 

We present a hybrid approach that combines symbolic natural language understanding systems 

with language models for word sense disambiguation. 

3.1  Overall Framework 

Our approach works through four steps, as shown in Figure 3. First, a symbolic NLU system 

analyzes the input sentence and generates multiple candidate meanings for ambiguous words. 

Second, for each ambiguous word, its symbolic representations are converted into natural 

language descriptions that language models can understand. Third, we query a language model to 

select the most appropriate meaning given the context. Finally, we integrate the selected meaning 

back into the symbolic NLU system and apply the corresponding semantic information.  

 

3.2  Symbolic Candidate Generation 
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The symbolic NLU system first performs syntactic and semantic analysis on the input sentence. 

For each ambiguous word, the system retrieves multiple possible meanings from its knowledge 

base. These candidate meanings are represented as complex logical forms with detailed semantic 

and relational information.  

Consider the sentence “The traffic light turned yellow” with the ambiguous verb “turn.” The 

system generates eighteen different candidate meanings. Figure 4 shows three representative 

examples that illustrate fine-grained distinctions within the same frame as well as coarse-grained 

difference across frames: 

 
 

Figure 3. Overall framework of the hybrid word sense disambiguation approach. 

 
 

Figure 4. Three candidate meanings for the ambiguous verb “turn.” 
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Each candidate provides a structured semantic representation that captures different aspects 

of the possible meaning. This includes ontological classifications that specify the type of action or 

entity, relational predicates that define how elements connect to each other, and constraints that 

determine how the word relates to other elements in the sentence. The system can generate many 

candidates for a single ambiguous word, each representing a different possible interpretation. In 

the examples below, the first candidate treats “turn” as an external transformation that turns one 

thing into another, the second as an internal state change, while the third belongs to a completely 

different frame and represents document submission. 

When a sentence contains multiple ambiguous words, the system processes them one at a 

time instead of simultaneously. This makes sure that once a word is disambiguated, the remaining 

ambiguous words are constrained to semantically compatible choices, preventing conflicting 

interpretations within the same sentence. 

3.3  Natural Language Conversion  

To make complex symbolic candidate meanings understandable to language models, we use 

FIRE’s built-in verbalize function. Verbalize converts CycL expressions into English text (Nakos, 

Demel, & Forbus, 2025; Wilson et al., 2019). This approach of converting formal logical 

representations into natural language is similar to template-based methods developed for systems 

like Cyc where assertions are turned into readable English (Baxter et al., 2005). The function uses 

predefined text templates and simple linguistic information to generate output. 

For each candidate meaning, we extract the individual logical statements and call the 

verbalize function on each one. The conversion process has three steps. We extract expression 

components by separating individual sub-expressions from the conjunctive structure. We then 

convert each sub-expression individually by calling verbalize on each part. Finally, we combine 

the resulting natural language fragments into a complete meaning description using semicolons as 

separators. Using our previous examples, the conversion works as shown in Figure 5.  

This conversion mechanism transforms complex symbolic representations into natural 

language options that language models can understand and process. The verbalized descriptions 

capture the essential semantic differences between candidates while remaining understandable to 

both the language model and humans, though the verbalization process may not always produce 

the perfect outputs. 

 
Figure 5. Three candidate meanings conversion to natural language. 
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3.4  LLM Querying and Selection 

We build standardized prompt templates for the language model. The prompt includes the 

original sentence, identifies the ambiguous word, and presents all candidate meanings as 

numbered options. Figure 6 shows an example of the specific prompt sent to the large language 

model.  

We query the language model for the most likely interpretation of the word using the current 

sentence as context. The model returns an option number which gets parsed and mapped back to 

the corresponding symbolic meaning representation.  We note that for sentences in connected text 

including a small set of prior sentences as context will almost certainly be beneficial, but for 

sentences drawn from a benchmark, such sentences are often not available, and hence we only 

used the current sentence as context for uniformity. 

3.5  Result Integration 

The selected meaning gets integrated back into the symbolic NLU system through several steps. 

We map the chosen option number back to the full symbolic representation, including all logical 

predicates. The selected results are then propagated to the rest of that sentence’s analysis via a 

truth maintenance system. Once a choice for one word is made, the system immediately updates 

the discourse state and rules out parse trees that are incompatible with the confirmed selection, 

thus maintaining consistency across the entire sentence’s semantic analysis. Additionally, this 

propagation allows the system to automatically access the corresponding coarse-grained semantic 

frame information through pre-established bindings in the knowledge base based on the selected 

fine-grained candidate. 

The method successfully bridges symbolic and neural approaches by converting complex 

logical representations into natural language that LLMs can process. This enables the system to 

make fine-grained semantic distinctions without requiring hand-annotated training data. 

Moreover, the selected meanings maintain their original symbolic structure, allowing seamless 

integration back into the NLU system for further processing. 

4.  Experiments and Results 

 
 

Figure 6. Example prompt template for LLM. 
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4.1  Dataset and Gold Standard 

We evaluate our approach on premises from the Choice of Plausible Alternatives (COPA) dataset 

(Roemmele, Bejan, & Gordon, 2011). COPA premises contain rich semantic content with 

frequent lexical ambiguities that make them well-suited for testing both coarse and fine-grained 

disambiguation systems. These sentences often describe causal relationships and human actions, 

leading to ambiguous interpretations of key predicates. For example, in “My body cast a shadow 

over the grass,” the verb “cast” could refer to physical projection or theatrical performance, while 

“The woman tolerated her friend’s difficult behavior” contains “tolerated” which might indicate 

emotional endurance or physical resistance. 

Our test set consists of 50 COPA premise sentences3 containing 114 ambiguous words that 

require disambiguation. We chose these sentences to span various semantic domains and include 

both verb and noun ambiguities. Each sentence averages about 2.3 ambiguous terms, providing 

sufficient complexity to test our method’s effectiveness across different linguistic contexts. 

We constructed the gold standard through human annotation by the first author, where each 

ambiguous word was manually assigned the correct predicate and semantic frame based on the 

sentence context. The annotation process followed consistent criteria by considering both the 

immediate syntactic context and the broader discourse meaning of each sentence. We 

acknowledge that our single-annotator evaluation conducted by the primary researcher introduces 

potential bias into the experiment, and it would be preferable to use the entire dataset.  However, 

these initial results already provide evidence for the approach, which we plan to confirm with 

independent annotations and larger datasets. 

 

4.2  Experiment Setup 

We use the Microsoft Phi4 LLM (Abdin et al., 2024) here and use BERT (Devlin et al., 2018) as 

a baseline. We evaluate performance at two levels of semantic granularity. The BERT Frame 

Classifier, our primary baseline, uses a pre-trained BERT model fine-tuned for FrameNet frame 

classification (Nakos & Forbus, 2023). Given a sentence and target word position, this classifier 

outputs probability distributions over candidate frames and selects the highest-scoring option. 

While useful for frame-level disambiguation, the classifier is coarse-grained and cannot 

distinguish between fine-grained choices within the same frame. It also cannot disambiguate 

choices without a FrameNet frame, and the conceptual coverage of the OpenCyc ontology is 

much broader than FrameNet. 

To assess our approach’s performance on fine-grained disambiguation capabilities, we also 

implement a BERT Random baseline that combines the BERT frame classifier with random 

predicate selection. This method first applies BERT to identify the correct FrameNet frame, when 

one exists. If the frame prediction is incorrect, the instance is marked as wrong. When the frame 

is correctly identified, the system randomly selects one predicate from within that frame. This 

 
3 The full COPA consists of 1,000 sentences. We selected a tractable subset to ensure high-quality gold annotations, 

with large-scale studies planned for future work. 
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baseline represents the limitation of systems that can only perform coarse-grained 

disambiguation.  

Our experiment design includes two evaluation settings. The coarse-grained evaluation 

measures accuracy at the frame level, comparing BERT’s frame classification against our 

approach on the Phi4 for frame identification. The fine-grained evaluation assesses predicate-

level accuracy, contrasting BERT Random with our complete Phi4-based disambiguation system. 

We use accuracy as our primary evaluation metric, measuring the percentage of ambiguous 

words correctly disambiguated at each granularity level. The Phi4 model operates with default 

parameters, processing natural language descriptions of semantic alternatives to make 

disambiguation decisions based on sentence context.   

4.3  Results 

Our results demonstrate significant improvements for the Phi4-based approach across both 

evaluation settings. Table 1 shows the accuracy scores for each method at different levels of 

semantic granularity. 

Table 1. Accuracy for our approach on Phi4 and the baseline BERT approach across two granularity levels. 

 Coarse-grained Fine-grained 

BERT 69.3% 20.2% 

CNLU+Phi4 84.2% 82.5% 

 

At the coarse-grained level, our approach on Phi4 achieves 84.2% accuracy compared to 

BERT’s 69.3%. This suggests that our hybrid approach can effectively handle frame 

identification tasks. 

The fine-grained results reveal even more dramatic differences. Our complete system 

achieves 82.5% accuracy for predicate-level disambiguation, while the BERT Random baseline 

manages only 20.2%. This gap underscores both the inherent difficulty of fine-grained 

disambiguation and the effectiveness of our approach in choosing precise predicate-level 

interpretations. 

A particularly notable finding is the consistency of our method’s performance across granularity 

levels. The difference between coarse-grained (84.2%) and fine-grained (82.5%) accuracy is very 

close, suggesting that our approach can simultaneously handle both frame identification and 

predicate selection with similar accuracy. This consistency contrasts with our BERT baseline, 

which shows a significant performance drop from coarse-grained (69.3%) to fine-grained (20.2%) 

disambiguation accuracy. 

Error pattern analysis reveals that among the 96 cases where Phi4 correctly identified 

semantic frames, 94 achieved accurate predicate-level disambiguation. This finding provides 

important insights into our method’s disambiguation capabilities as discussed in the next section.  

The BERT Random baseline’s poor performance highlights a fundamental limitation of 

approaches that rely solely on coarse-grained disambiguation. Even when frame identification 
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succeeds, random selection among fine-grained alternatives will generate results barely above 

chance level, which does not inherently help with disambiguation at a deeper level. 

5.  Discussion 

Our hybrid approach demonstrates the potential of combining symbolic natural language 

understanding systems with large language models for fine-grained word sense disambiguation. 

The experiment results reveal several important insights about how this integration performs 

across different levels of semantic granularity and what this means for practical natural language 

processing applications. 

5.1  Strength 

The elimination of training data requirements represents a significant contribution. Traditional 

disambiguation systems depend heavily on manually annotated datasets, which are expensive to 

create and are often domain specific. Our method avoids this limitation by using the symbolic 

system’s candidate generation capabilities combined with the language model’s semantic 

understanding. This method makes the system immediately applicable to new domains and 

languages, without the need for supervised training on annotated examples.  The cost is the 

construction of a rule-based natural language generation capability (here, verbalize).  In our 

experience, this cost is not high, because the goal is to find one good linguistic realization of a 

concept, versus understanding, where coverage means finding all ways that the concept might be 

expressed in language. 

As presented above, the error pattern provides an important insight into how our approach 

handles semantic disambiguation. When our method successfully identifies semantic frames, it 

demonstrates strong reliability in fine-grained predicate selection. This concentrated effectiveness 

within correct conceptual boundaries suggests that our method engages meaningfully with deeper 

semantic distinctions and predicate-level reasoning. 

Beyond its theoretical significance, this pattern offers crucial practical value for semantic 

processing applications. Frame-level reliability creates a stable foundation for fine-grained 

disambiguation, ensuring that predicate selection occurs within appropriate semantic boundaries. 

This consistency reduces the risk of major semantic misunderstandings while confining errors to 

manageable distinctions between related concepts. By operating within correct semantic frames, 

our approach enables more precise processing than existing coarse-grained methods, which often 

struggle to address the nuanced predicate distinctions that applications require. 

5.2  Case Studies and Examples 

5.2.1  Fine-Grained Disambiguation 

Fine-grained disambiguation reveals its value in cases where coarse-grained methods seem 

successful but miss important semantic distinctions. Returning to our previous example, consider 

“The traffic light turned yellow.” For the word “turn,” multiple frames are possible, including 

FN_Undergo_change, FN_Submitting, FN_Change_direction, etc. Both our approach and BERT 
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correctly identify FN_Undergo_change as the appropriate frame. However, this frame contains 

multiple predicate interpretations with different meanings. One represents external transformation 

(TurningSomethingIntoSomethingElse), while another represents internal state change 

(IntrinsicStateChangeEvent). 

This distinction matters for accurate understanding. A traffic light changing color is an 

intrinsic state change, not a transformation of one object into another. If there is further reasoning 

based on this, it can affect the understanding more severely, such as causality, object properties, 

and event types. For instance, if “turning yellow” was mistakenly identified as an external 

transformation, it would imply that the current traffic light no longer exists, and some agent 

caused such replacement. This may lead to inconsistencies when integrating new information 

about the current traffic light or attempting to find the nonexistent external agent, and ultimately 

to a failure to grasp the fundamental cycling behavior of a traffic light’s color change. 

5.2.2  Coarse-Grained Disambiguation 

Our approach demonstrates strong performance in frame-level disambiguation. Consider the 

sentence “My body casts a shadow over the grass.” For the word “grass,” CNLU generates 

candidate meanings across different frames, which are then verbalized into natural language 

descriptions. The language model correctly identifies (isa grass10581 Grass-Plant) within the 

FN_Plants frame, because the surrounding physical context “casting a shadow” indicates the 

botanical meaning rather than alternative interpretations. In contrast, the BERT baseline 

incorrectly categorizes the same word under the FN_Intoxicants frame, indicating that it can 

make mistakes even at a broad semantic level. 

5.2.3  Information Completeness and Semantic Richness 

Beyond correct disambiguation, our method also demonstrates the ability to select semantically 

richer representations when multiple valid options exist within the same frame. Consider the 

sentence “The customer filed a complaint with the store manager.” For the word “complaint,” 

both approaches correctly identify the FN_Complaining frame, but multiple predicate-level 

representations are available. Our system selects the more informative option: (and (isa 

complaint57061 Complaint) (recipientOfInfo complaint57061 store-manager57126)) rather than 

the simpler (isa complaint57061 Complaint). This choice captures not only the existence of a 

complaint but also the key character, which is the recipient in this case, and their relationship 

explicitly mentioned in the sentence. This demonstrates our method’s preference for semantically 

richer representations that preserve explicit relational information from the input. 

5.2.4  Failure Analysis 

While our approach achieves strong overall performance, we also want to examine its failures 

because they provide important insights into its limitations. These errors generally fall into two 

categories: minor predicate-level mistakes within correct frames, and incorrect frame 

identification. 

The first category is illustrated by the sentence “The gardener wanted his plants to flourish.” 

For word “flourish,” our system correctly identifies the FN_Thriving frame but selects (isa 
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flourish37584 GainingInWealth) instead of the correct predicate focusing on plant growth events. 

This error demonstrates that even within appropriate semantic frames, the language model can 

sometimes be influenced by certain semantic connections rather than domain-specific 

interpretations suggested by the context. Such errors, while relatively infrequent, highlight the 

ongoing challenge of ensuring that language models fully integrate 

contextual information when making fine-grained semantic distinctions. 

More concerning are occasional failures where the system makes fundamental conceptual 

errors. In the sentence “The vandals threw a rock at the window,” our approach incorrectly selects 

(isa window40758 ComputerDisplayWindow) instead of the correct (isa window57271 

WindowPortal) within another frame. This error represents a serious misunderstanding of the 

physical context, confusing a building’s window with a computer interface element despite clear 

indicators of physical vandalism in the sentence. 

This type of error reveals a critical limitation: language models can make choices that violate 

basic physical world understanding. Such failures underscore the importance of developing robust 

validation mechanisms and highlight areas where purely neural approaches to semantic selection 

may require additional constraints or verification steps. Table 2 summarizes the distribution of 

error types across all misclassifications of the proposed system. 

Table 2. Error analysis breakdown. 

Error Type Percentage 

Physical context 30% 

Action 30% 

Social & role 15% 

Emotion 15% 

State change 10% 

 

Despite these limitations, our analysis shows that when frames are correctly identified, our 

approach demonstrates reliable fine-grained disambiguation. The method shows strong overall 

performance, especially compared with the baseline. 

 

5.3  Limitations 

While we present the above strong performance of our approach across two disambiguation tasks, 

there are three limitations. 

Firstly, our evaluation relies on human-annotated gold standards, which may introduce 

subjectivity in the assessment. Fine-grained semantic distinctions can sometimes be interpreted 

differently by different annotators, especially when dealing with subtle predicate-level differences 

within the same semantic frame. To establish more valid and robust results, we will conduct 

future experiments with multiple annotators with inter-annotator agreement measurements, as 

well as testing on a larger dataset. 
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Secondly, our approach is implemented within our CNLU system. While the core 

methodology of using language models to select among symbolically generated candidates is 

generally applicable, the specific performance we observe may be influenced by the strengths and 

limitations of our particular symbolic system. The method’s effectiveness in other symbolic 

frameworks or with different knowledge representation schemes would require additional 

validation and potentially some adaptation of the candidate generation and verbalization 

processes. However, the core requirements for adaptation are straightforward: any symbolic 

system that can generate distinguishable semantic alternatives for ambiguous expressions and can 

convert its internal representations into natural language descriptions can adopt our approach. For 

example, systems like Cyc that already possess similar capabilities could readily adopt it (Baxter 

et al., 2005). Therefore, this dependency does not invalidate our core contribution but suggests 

that implementation details may need adjustment for different symbolic NLU systems.  

Thirdly, our method’s performance depends on the quality of verbalizations. While our 

current approach works well as shown in the evaluation, different verbalization strategies could 

impact disambiguation accuracy. Future work should explore systematic approaches to improve 

this aspect. 

Despite these limitations, our results demonstrate that the approach of combining symbolic 

candidate generation with neural selection mechanisms offers a promising direction for fine-

grained word sense disambiguation that addresses key weaknesses in existing methods.  

6.  Related Work 

6.1  LLM-only Disambiguation 

Recent word sense disambiguation research increasingly uses large language models to resolve 

semantic ambiguity. These approaches typically use prompting strategies to have models select 

appropriate meanings from predefined options or generate natural language explanations for word 

senses in context (Sumanathilaka, Micallef, & Hough, 2024). Some methods fine-tune language 

models specifically for disambiguation tasks, while others rely on the models’ inherent linguistic 

knowledge through carefully designed prompts (Yae et al., 2025). 

Large language models process disambiguation tasks by drawing on patterns learned from 

extensive data from the internet during training (Brown et al., 2020). They can model contextual 

relationships within sentences and paragraphs, allowing them to consider broader linguistic 

context when making word sense selections. The models typically work with natural language 

descriptions of word meanings, which allows for flexible representation of semantic concepts 

without requiring rigid categorical schemes. 

However, LLM-based approaches usually generate outputs in free natural language form, 

which requires additional processing when integrating with formal symbolic reasoning systems 

for further downstream tasks. 

6.2  Traditional Symbolic Disambiguation 

Traditional word sense disambiguation systems have relied on symbolic approaches that use 

explicit knowledge representations or hand-written rules to resolve semantic ambiguity. These 
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methods typically use lexical resources such as WordNet, semantic networks, and domain-

specific ontologies to provide structured representations of word meanings. Classic approaches 

include preference-based matching with semantic templates (Wilks, 1975) or selection preference 

constraints (Resnik, 1997) to identify appropriate word senses. 

Specifically, some research has focused on such computational cognitive models for natural 

language understanding and disambiguation. Mcshane and Nirenburg (2021) have proposed a 

method centered on a primarily symbolic system which uses a rich semantic ontology. It uses 

multiple reasoning strategies to parse text and handles ambiguity by maintaining many candidate 

interpretations that are progressively refined through their designed six stages. Similar to our 

work, their approach builds upon a knowledge-rich symbolic system to generate structured 

semantic representations. However, our system is different from theirs. They follow a knowledge-

based symbolic path where disambiguation relies on hand-crafted ontology, lexicon, and episodic 

memory, while our method combines symbolic NLU system with large language models. 

The primary strength of symbolic approaches is their transparency. These systems provide 

clear explanations for their disambiguation choices and consistently produce the same outputs for 

identical inputs. The explicit semantic representations integrate naturally with other symbolic 

reasoning components, making them suitable for applications requiring structured knowledge 

manipulation. 

Some analogical approaches have been explored that use human-like analogical reasoning 

and processing to perform disambiguation (Barbella & Forbus, 2013). One method is to construct 

cases from structured representations and analogically reason through and find the matching prior 

contexts for making word sense disambiguation. 

However, symbolic systems face significant limitations in handling the flexibility and 

variability of natural language. They struggle with complex sentence structures, informal 

expressions, or linguistic patterns that fall outside their predefined rules. The manual construction 

of comprehensive rule sets requires extensive effort from domain experts, and these systems are 

difficult to adapt to new domains without substantial work. Additionally, their coverage depends 

heavily on the completeness of underlying knowledge resources, which limits their applicability 

to broad, real-world language processing tasks. 

7.  Conclusion 

This work presents a novel hybrid approach that uses natural language descriptions as a direct 

interface between symbolic semantic representations and language model capabilities. This 

design addresses the complementary weaknesses found in pure approaches. Unlike purely 

symbolic systems, it handles linguistic variation through the language model component. Unlike 

pure neural approaches, it produces structured semantic outputs and maintains transparent 

decision processes. The natural language verbalization process enables this integration without 

modifying either component. The approach works particularly well for applications requiring 

semantic precision beyond what current coarse-grained methods can provide, while maintaining 

the linguistic flexibility that traditional symbolic systems lack. 

There are two future directions to explore, in addition to larger-scale experiments. First, we 

plan to extend the hybrid methodology to co-reference resolution, which could address current 
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limitations in linking pronouns and entities across sentences. Second, we aim to apply similar 

techniques to parsing disambiguation. Together, these extensions would demonstrate a broader 

applicability of symbolic–neural integration approach in natural language understanding tasks. 
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