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Abstract

Robots are increasingly being used to assist humans in different application domains. The ready
availability of high-fidelity hardware and data has led to the development of deep networks and
foundation models that are now considered to be state of the art for many problems in robotics.
However, these methods and models are resource-hungry and opaque, and they are known to pro-
vide arbitrary decisions in previously unknown situations, whereas practical robot application do-
mains require transparent, multi-step, multi-level decision-making and ad hoc collaboration under
resource constraints and open world uncertainty. This essay argues that to leverage the full poten-
tial of robots, we need to revisit the fundamental principles that can be traced back to the early
pioneers of Al who had a deep understanding of cognition and control in humans. We also need to
embed these principles in the architectures we develop for robots, using deep networks as one of
many tools that build on this foundation. In addition, this essay briefly illustrates the benefits of this
approach by drawing on my work on core problems in robotics such as visual scene understanding
and planning, changing-contact manipulation, and ad hoc multiagent collaboration.

1. Motivation and Claims

Robots are increasingly being deployed in application domains such as navigation, healthcare, and
manufacturing. Although aided by the availability of high-fidelity hardware, this deployment has
largely been due to recent advancements in the form of deep networks and foundation models (FMs)
such as Large Language Models (LLMs), Vision Language Models (VLMs), and Vision Language
Action models (VLAs), which are considered state of the art for perception, reasoning, manipula-
tion, and interaction problems in robotics (Black et al., 2025; Doshi et al., 2024; Huang et al., 2023;
Schick et al., 2023; Zhao et al., 2023). There is a lot of hype (and fear) associated with these meth-
ods and models, with claims being made about their “planning”, “commonsense reasoning”, and
“artificial general intelligence” (AGI) capabilities. As a result, we are witnessing a rapid decline in
the diversity of formulations being pursued to address problems in robotics.

To motivate the exploration of different formulations, consider the key requirements of inte-
grated robot systems sensing and (inter)acting in the physical world, which include:

* making multi-step, multi-level decisions based on multimodal sensor inputs (e.g., vision,
speech, and touch) in the absence of comprehensive domain knowledge;

* operating under open world uncertainty, where the true optimal decisions may be unknowable
and probabilities may not always meaningfully model the uncertainty;
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* operating under (often strict) constraints on resources such as computation, storage, training
examples, and power;

* rapidly and incrementally revising (as needed) existing models for various tasks such as per-
ception, planning, and manipulation; and

* supporting transparency in decision making, and expressing decisions in terms of human
concepts such as beliefs and goals to promote understanding.

Next, consider the (by now) well-known characteristics of modern deep network methods and foun-
dation models (Guan et al., 2023; Kambhampati et al., 2024; Lu et al., 2024).

» They are excellent statistical predictors for well-defined tasks, but they are inconsistent and
may make arbitrary decisions in truly novel situations;

* Despite the development of architectures with different network structures, they are based on
a narrow set of representations and update processes;

* They are resource-hungry systems, making substantial demands in the form of computation,
data, storage, and energy; and

* They are batch learning systems whose operation remains opaque; even when we can attribute
decisions to specific nodes or layers, we are often unable to ascribe meaning to this finding.

There is thus a fundamental mismatch between the requirements of integrated robot systems and
the characteristics of the Al methods currently being developed and used in robotics. Attempts to
address this mismatch have led to hybrid methods, e.g., neurosymbolic (NeSy) Al methods (Besold
et al., 2022; Smet et al., 2023). They have also focused on enhancing autonomy in FMs by devel-
oping “Agentic AI” and “Agentic LLMs” (Plaat et al., 2025; Wang et al., 2024). In addition, they
have sought to discover cognitive design patterns in LLMs, toward AGI (Wray et al., 2025). In all
such work, prior knowledge encoded in logics, probability theory, or other design choices impose
constraints on a deep network backbone. The associated representational and processing commit-
ments continue to limit expressivity, efficiency, transparency, and reproducibility, whereas we still
have not explored and understood the consequences of a broader set of design choices. Furthermore,
they exacerbate the need for large computing centers, leading to a negative impact on sustainability.

This essay builds on a recent paper (Sridharan, 2025) to advocate that we revisit some key
principles that can be traced back to the early pioneers of Al, and are relevant to the design of
cognitive architectures (Langley, 2017), but are not fully leveraged in robotics research (Section 2).
It also describes how embedding these principles enables the exploration of a broader space of
choices in the design of robot architectures, and summarizes the corresponding benefits (Section 3).

2. Key Principles

The early pioneers of Al were deeply inspired by, contributed to, and had a sound understanding
of related disciplines such as Psychology, Neuroscience, and Philosophy. Much of their work in Al
was inspired by insights into natural intelligence, i.e., cognition and control in humans and other
biological systems, leading to observations such as:
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* Human behavior is jointly determined by internal cognitive processes and the environment.
We jointly explore the underlying perception, reasoning, control, and learning problems
using different representations and processes at different abstractions (Sloman, 2012; Tur-
ing, 1952), automatically directing attention to relevant representations and processes as
needed (Broadbent, 1957; Triesman & Gelade, 1980).

* Unlike the “batch learning” and optimization approach currently prevalent in Al and other
disciplines, humans acquire skills incrementally, interactively, and compositionally through
adaptive satisficing under resource constraints and open world uncertainty; humans seek to
make rational decisions instead of optimal ones (Simon, 1956; Gigerenzer, 2021).

* Human skills, particularly our sensorimotor skills, have evolved over a long time for some
very hard and specific set of engineering problems. Any attempt to replicate these skills
in robots needs to pursue an integrated systems approach (Minsky, 1986; Moravec, 1990);
just replicating some of our hardware, e.g., our arms and hands, will not lead to the desired
sensorimotor capabilities, e.g., dexterous robot manipulation, for a different set of tasks.

These observations do not preclude the use of deep network or FMs; in fact, some of them have
been (re)discovered and used to improve the performance of deep networks. Instead, they direct us
to focus on certain key principles in the design of robot architectures, with deep networks being one
of many available tools. Here, we focus on three sets of such principles.

1. Refinement, Compositionality, Attention. The first set of principles advocate representing
actions and change in the domain in the form of transition diagrams at different abstractions,
with the fine(r)-granularity description(s) being a refinement of the coarse(r)-granularity de-
scription(s). Refinement is also related to compositionality, the hierarchical representation
of knowledge at different resolutions. These principles have played a key role in computing
and other disciplines over many decades (Fodor, 1975; Freeman & Pfenning, 1991; Diet-
terich, 1998). Research has identified that such representations lead to a good computational
model for human cognition (Knoblich & Flach, 2001; Piantadosi et al., 2016), and for tasks
in computer vision and robotics (Fidler & Leonardis, 2007; Zabkar & Leonardis, 2016).

To truly adapt these principles to robotics, we need to move beyond discovering decompo-
sitions in deep networks (Prasad et al., 2024) or encoding these principles in deep network
architectures. Instead, we need to establish a suitable representation (i.e., a vocabulary) and
processes that update this representation at each level of abstraction, and define a formal re-
lationship between the abstractions. The relevant representations and processes can then be
chosen automatically for any given task and domain using the principle of selective atten-
tion (Broadbent, 1957) and decision heuristics (more information below). Even a limited
exploration of attention has led to a performance improvement with deep networks (Doshi
et al., 2024). Furthermore, if we expand the range of representations and update processes,
it will enable the robot to acquire domain knowledge and make decisions based on differ-
ent information sources. It will also enable the robot to support different descriptions of its
decisions such that they make contact with human concepts such as goals and beliefs.
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2. Ecological Rationality (ER) and Decision Heuristics. The second set of principles build
on Herb Simon’s definition of Bounded Rationality (Simon, 1956) and the related algorith-
mic theory of heuristics (Gigerenzer, 2020). Unlike the focus on optimal search in many
disciplines (e.g., finance, computing) in the presence of risk over a set of known scenarios,
ER studies decision making under open world uncertainty, i.e., when the space of possible
scenarios is not known in advance. It characterises the behavior of a human or an Al system
as a joint function of the internal cognitive processes and the environment, using adaptive
satisficing and decision heuristics such as tallying, sequential search, and fast and frugal (FF)
trees to make rational decisions instead of optimal ones.

Unlike the use of heuristics as a “hack” or to explain biases (e.g., in the heuristics and biases
program in Psychology), ER considers decision heuristics as a strategy to ignore part of the
information in order to make decisions more quickly, frugally, and accurately than complex
methods with many free parameters (Gigerenzer & Gaissmaier, 2011). Also, unlike modern
Al methods that are largely prescriptive (describing what should be done), it is both descrip-
tive (describing what people or agents do) and prescriptive. It uses an adaptive toolbox of
classes of decision heuristics, and an algorithmic approach involving out-of-sample and out-
of-population testing to identify heuristics that match domain characteristics. Such decision
heuristics are well-suited to make decisions under open world uncertainty, where optimal
decisions are unknowable and probabilities are not always a good model of the uncertainty.
Their design also automatically supports process-level explanations of the decisions made.

3. Interactive Learning and Memory Consolidation. The third set of principles jointly re-
fer to different types of learning such as supervised (or unsupervised) learning and learning
from reinforcement (Laird et al., 2017). The difference lies in how this learning is achieved.
Modern Al systems increasingly focus on learning a single model or policy that determines
decisions across different categories, situations, platforms, and/or domains. Such an approach
is considered to be essential for generalization without realizing that there is a mismatch be-
tween the underlying design choices and the desired functional capabilities, creating problems
that we then struggle to address. For example, the learned model or policy is hard to under-
stand, explain, or revise in a meaningful manner. Such approaches are appropriate for tasks
or domains in which the space of possible options or situations is known a priori and there
are no strict resource constraints; they are not really suitable for decision making in the wild,
i.e., under open-world uncertainty (Katsikopoulos et al., 2021a).

Interactive learning, on the other hand, focuses on learning as needed to adapt to any given
domain and set of tasks. It advocates reasoning with prior knowledge and decision heuristics
to trigger, inform, and constrain the learning. It also enables cumulative learning through
memory consolidation, revising the learned knowledge and discovering high-level (i.e., more
abstract) concepts and theories offline (Stickgold, 2005; Wolpert et al., 2011) to update the ex-
isting knowledge for subsequent reasoning. Such an approach is known to aid in incremental
knowledge acquisition, information storage, and information retrieval in humans (Baddeley,
2012). It also, not surprisingly, leads to simpler models that are amenable to incremental and
rapid revisions, even in situations that were previously unknown to the robot.
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3. Architectural Examples

This section provides examples of embedding the principles outlined above in robot architectures to
address problems in reasoning, control, collaboration, and learning.

Refinement for knowledge representation and reasoning. Refinement of an agent’s action theo-
ries has been defined using situation calculus (Banihashemi et al., 2018), with a smooth transfer of
information and control between two abstractions. However, this work makes the strong assumption
of a bisimulation relation between these action theories, which limits expressivity for robot domains.
There has also been related work on task and motion planning (TAMP) in robotics (Garrett et al.,
2021; Kokel et al., 2023). This work combines discrete-space task planning and continuous-space
motion planning at different resolutions, e.g., using first-order propositional logic to compute a se-
quence of abstract tasks to achieve a given goal, and using probabilistic motion planners (Srivastava
et al., 2013) to compute a sequence of movement actions to complete each task in the abstract task
plan. This can also involve learning feature-based state and action abstractions towards generalized
TAMP for continuous control tasks (Curtis et al., 2022). However, existing methods do not fully: (a)
support the bidirectional flow of relevant information between the different abstractions; (b) handle
uncertainty, particularly the effect of non-stationarity and future state uncertainty on the associated
models; and (c) address the discontinuities in the interaction dynamics, i.e., the sudden changes in
forces and the resultant acceleration experienced by the robot when it makes or breaks contact with
objects and surfaces (Garrett et al., 2021).

The limitations mentioned above can be attributed to not leveraging the principles outlined
above in building an integrated (cognitive) architecture that jointly addresses the underlying rea-
soning and learning problems. For example, we developed a refinement-based architecture that
supported different representations (logics, probabilities) and processes (non-monotonic logical
reasoning, probabilistic sequential decision making) for reasoning with any given domain’s tran-
sition diagrams at two different resolutions (Sridharan et al., 2019). The fine-resolution descrip-
tion was defined as a refinement of the coarse-resolution description, which included theories of
intention (Gomez et al., 2021), affordance (Langley et al., 2018; Sridharan et al., 2017), and ex-
plainable agency (Langley et al., 2017; Sridharan & Meadows, 2019; Sridharan, 2024). For any
given goal, each abstract action in the plan created by logical reasoning in the coarse resolution was
implemented as a sequence of fine-resolution transitions obtained by automatically identifying and
reasoning probabilistically with the relevant part of the fine-resolution description. In addition, the
use of decision heuristics helped learn and revise the model parameters to achieve more reliable
and efficient operation compared with baselines based on deep networks or reasoning with com-
prehensive domain knowledge. Furthermore, we can consider including other representations and
processes; we could obtain latent embeddings of perceptual inputs from deep networks and use a
developmental learning approach to map target actions (e.g., grasp and push) to transitions between
states defined in the latent space (Juett & Kuipers, 2019).

Decision heuristics for multiagent collaboration and robot manipulation. Although ER and de-
cision heuristics have provided good performance on prediction problems in application domains
such as finance, healthcare, and law (Brighton & Gigerenzer, 2012; Durbach et al., 2020; Gigeren-
zer, 2016; Katsikopoulos et al., 2021b), there is hardly any use of these methods in robot architec-
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tures, except in some related work in the cognitive systems community (Langley & Katz, 2022).
This lack of uptake is potentially because the successes of decision heuristics do not receive the at-
tention they deserve, and because their inherent simplicity makes researchers doubt their suitability
for addressing complex practical problems.

As one example of the use of decision heuristics, consider the problem of agents (i.e., Al sys-
tems, robots, and humans) collaborating with other agents without prior coordination, i.e., ad hoc
teamwork (AHT) (Mirsky et al., 2022). Methods considered state of the art for AHT use a large
dataset and/or FMs to model the behavior of different agent types and to determine the ad hoc (Al)
agent’s behavior (Rahman et al., 2021; Liu et al., 2024). As discussed in Section 1, such methods
do not support transparency or rapid adaptation to new situations, and the necessary resources (e.g.,
training examples, computation) are often not available in practical domains. We instead adapted
our refinement-based architecture to pose AHT as a joint reasoning and learning problem. Each ad
hoc agent chose its actions based on non-monotonic logical reasoning with prior domain knowledge
(action theories at two abstractions) and an ensemble of FF trees learned rapidly to predict the be-
havior of other agents. We experimentally demonstrated the ability to collaborate in complex envi-
ronments, adapting to previously unknown changes (e.g., in the environment or team composition)
and providing better performance than state of the art baselines while using orders of magnitude
fewer resources (e.g., 5K instead of 1M examples) (Dodampegama & Sridharan, 2023).

As a very different example of the use of decision heuristics, consider changing-contact robot
manipulation, which involves a robot making and breaking contacts with different objects and sur-
faces; many robot and human manipulation tasks are such changing-contact tasks. The dynamics
of these tasks are piecewise continuous, with abrupt transitions (i.e., sudden changes in force and
acceleration) that can damage the robot or the domain objects. Unlike existing methods that attempt
to explore the space of possible transitions in advance, and pose the problem of smooth motion as
an (offline) optimization problem or learning problem (Khader et al., 2020), we drew inspiration
from insights into human motor control (Kawato, 1999; Flanagan et al., 2003). Specifically, we
enabled the robot to use a single initial demonstration of the desired motion trajectory, or run-time
observations, to rapidly learn and revise simple forward models that predict the end-effector sensor
observations in each upcoming time step. During run-time, any mismatch between the predicted
values and the actual sensor measurements incrementally and automatically revised the predictive
models and the gain parameters of a force-motion PD control law. Using experiments conducted in
different simulation domains and on a physical robot manipulator, we demonstrated the ability to
provide smooth motion during changing-contact manipulation tasks with changes in surfaces and
contacts that the robot was not aware of before (Sidhik et al., 2024).

Interactive learning for visual scene understanding and assistive robotics. To further illustrate
the benefits of leveraging the interplay between reasoning and learning in robot architectures that
embed the outlined principles, consider two other examples. These examples also illustrate how
modern deep networks and FMs can be used effectively in such architectures.

The first example focuses on vision-based scene understanding, vision-based planning, and
question answering, which are fundamental problems in computer vision and robotics. Methods
considered state of the art for these problems are based on deep networks and FMs that are trained
or tuned, for example, with a large dataset of images, potential questions, and answers to these ques-
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tions. We, on the other hand, developed a refinement-based architecture to determine the occlusion
of objects and the stability of object structures in images, arrange objects in desired configurations,
and to answer questions about the decisions made. With this architecture, the robot first attempted
to make the desired decisions (e.g., about stability and occlusion of objects) through non-monotonic
logical reasoning with generic domain knowledge available a priori. When the robot could not make
a decision (or made an incorrect decision on training examples), learning was triggered. The robot
then automatically identified examples of relevant images and regions in these images to be used
for learning models that were used to make the desired decisions. In addition, the examples used
for learning were also used as input for decision tree induction driven by decision heuristics to ac-
quire new knowledge (e.g., objects, actions, axioms) and consolidate existing knowledge to be used
for subsequent reasoning. We experimentally demonstrated: (a) better performance than baselines
based purely on deep networks, while using orders of magnitude fewer resources; (b) faster and
more effective training of deep networks by using only the relevant examples; and (c) performance
improvement directly attributable to reasoning and learning bootstrapping off of each other (Riley &
Sridharan, 2019; Sridharan & Mota, 2023). We also demonstrated the ability to provide relational
descriptions on-demand at different abstractions as explanations in response to different types of
questions (causal, contrastive, counterfactual) (Sridharan, 2024).

The second example illustrates the effective use of FMs in architectures based on the principles
outlined above. Specifically, we developed an architecture that enabled an embodied (Al) agent' to
collaborate with other agents in completing assigned tasks in a home environment. Instead of mak-
ing unsubstantiated and incorrect claims about the planning or commonsense reasoning capabilities
of FMs, our architecture was similar (in spirit) to the work on LLM-Modulo frameworks (Guan
et al., 2023; Kambhampati et al., 2024). It used an LLM to provide a generic prediction about
the sequence of tasks likely to be assigned in the near future based on any recent history of task
execution. The current and anticipated tasks were considered as joint goals by the robot, which in-
corporated decision heuristics with planning methods based on logics to compute action sequences
that would enable it to achieve these goals in collaboration with the other agents. We experimentally
demonstrated substantial improvement in the accuracy and computational efficiency of task comple-
tion compared with baselines that just used FMs (or deep networks) or knowledge-based reasoning,
and baselines that did not reason about anticipated tasks tasks (Singh et al., 2025; Fu et al., 2025).

In summary, the objective of this essay was to promote appreciation of some fundamental princi-
ples that can be traced back to the early pioneers of Al but are not being leveraged in the design of
modern architectures for robots. Since many of the corresponding choices also arise in the design
of cognitive systems and architectures, we hope that the examples provided above will encourage
researchers in this community to explore and understand the capabilities of different robot architec-
tures that embed these principles, leading to more robust solutions for open problems in robotics.
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