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Abstract
Constraint Satisfaction Problems (CSPs) present significant challenges to artificial intelligence due
to their intricate constraints and the necessity for precise solutions. Existing symbolic solvers are
often slow, and prior research has shown that Large Language Models (LLMs) alone struggle with
CSPs because of their complexity. To bridge this gap, we build upon the existing SOFAI archi-
tecture (SOFAI-v1), which adapts Daniel Kahneman’s “Thinking, Fast and Slow” cognitive model
to AI. Our enhanced architecture, SOFAI-v2, integrates refined metacognitive governance mech-
anisms to improve adaptability across complex domains, specifically tailored here for solving the
graph coloring problem, a specific type of CSP. SOFAI-v2 combines a fast System 1 (S1), lever-
aging LLMs, with a deliberative System 2 (S2), governed by a metacognition module. S1’s initial
solutions, often limited by constraint adherence issues, are improved through targeted feedback and
examples from metacognition, aligning S1 more closely with CSP requirements. If S1 fails to re-
solve the problem, metacognition strategically invokes S2, ensuring accurate and reliable solutions.
Our empirical results demonstrate that SOFAI-v2 achieves a 10.5% higher success rate and is up to
30% faster than a traditional symbolic solver in solving graph coloring problems.

1. Introduction

Constraint Satisfaction Problems are a core challenge in artificial intelligence (AI) due to their
demand for correctness adhering to strict constraints in static (Kumar, 1992) or uncertain, dynamic
environments (Verfaillie & Jussien, 2005). These problems are prominent in applications such as
scheduling, boolean satisfiability, resource allocation, temporal reasoning, and planning (Welsh &
Powell, 1967; Chaitin, 1982). Traditional approaches to solve CSPs typically rely on constraint
propagation or search (Haralick & Elliott, 1980). The symbolic approaches are known for their
accuracy but often struggle with scalability as the complexity of CSPs increases, hindered by high
computational overhead and slow processing times (Dechter, 2003; Rossi et al., 2006).

Recent advancements in LLMs have shown promise in rapidly processing complex informa-
tion (Ruoss et al., 2024), but they are fundamentally limited in solving sequential decision-making
tasks like planning (Valmeekam et al., 2022), and reasoning (Stechly et al., 2024). Due to their
probabilistic, retrieval-based nature, LLMs approximate solutions rather than generating definitive
answers, often leading to partial or inconsistent adherence to constraints (Jiang et al., 2023). Even
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with state-of-the-art prompting strategies and self-verification techniques, LLMs fall short in han-
dling strict requirements of CSPs, making their outputs unreliable for applications demanding high
precision. We study feasibility under fixed resource limits in the graph coloring decision problem,
a core constraint satisfaction setting that supports clear verification and iterative guidance.

The disparity between the precision of traditional symbolic methods and the adaptability and
speed of LLMs underscores the need for a new paradigm in tackling complex tasks like graph col-
oring (Jensen & Toft, 2011), a canonical CSP. Drawing inspiration from Daniel Kahneman’s cogni-
tive theory of “Thinking, Fast and Slow” (Kahneman, 2011) and its adaptation to AI as SOFAI-v1
(Fabiano et al., 2025; Booch et al., 2021), we introduce SOFAI-v2 which extends the earlier archi-
tecture by refining metacognitive mechanisms that oversee a fast, experience-based S1, powered by
an LLM, and a slow, deliberative S2 using the DSATUR algorithm for graph coloring. This gover-
nance mechanism continuously monitors and enhances S1’s outputs, offering targeted feedback and
constraint adherence examples; when S1’s solutions fall short, S2 is strategically invoked to guaran-
tee accuracy. In this setup, S1 swiftly produces initial solutions, while S2 provides a reliable fallback
for achieving precise constraint satisfaction. This work studies problem solving with a fast S1, a
deliberate S2, and an MC that monitors and guides iterations, with memory for reuse. Beyond the
S1/S2 framing, SOFAI-v2 is positioned as a neurosymbolic cognitive architecture: S1 (neural) pro-
poses, symbolic constraints verify, and MC enacts control. This aligns with computational accounts
of automatic versus controlled processing and supervisory control (e.g., contention scheduling and
supervisory attention) (Norman & Shallice, 1986; Cooper & Shallice, 2000), providing a bridge
from cognitive theory to an AI system.

The implemented system targets the graph coloring decision task and evaluates success rate,
time, and iteration behavior. Our contributions are as follows:

• Introduced SOFAI-v2, a neurosymbolic fast and slow architecture to enhance the performance
of CSP solvers on graph coloring problems through adaptive metacognitive governance.

• Created a comprehensive benchmark of graph coloring problems, featuring variations in
graph size, edge probability, and solvable and unsolvable instances to test adaptability.

• Conducted extensive empirical evaluations of various solver configurations for graph color-
ing, demonstrating advantages of SOFAI-v2 in terms of success rate, time efficiency.

The rest of the paper is organized as follows: we first provide the necessary background and
discuss prior work. Next, we present the SOFAI-v2 architecture, followed by the experimental
setup and results. Finally, we conclude with a summary of our findings.

2. Background

2.1 Graph Coloring Decision Problem

The graph coloring decision problem is a specific type of constraint satisfaction problem (CSP),
where the objective is to determine whether a given graph can be colored using at most k colors
such that no two adjacent nodes share the same color. Formally, the problem is defined as follows:
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• An undirected, unweighted graph G = (V,E)

• A positive integer k representing the maximum number of colors

• Determine whether there exists a function f : V → {1, 2, . . . , k} such that for every edge
(u, v) ∈ E, f(u) ̸= f(v).

Unlike the classical graph coloring problem, which aims to minimize the number of colors
used (an optimization problem), the decision version focuses solely on satisfiability: whether a
valid coloring exists for a given k. We use the DIMACS representation (Johnson & Trick, 1996)
to describe the graph coloring problem. The decision problem asks a clear yes/no question for a
fixed k. This matches many practical settings where a fixed resource limit is given and the goal is
feasibility, e.g., schedules with a fixed number of time slots, register allocation with a fixed number
of registers, or frequency assignment with a fixed set of bands. It provides MC with a simple
accept/reject signal and makes it straightforward to generate targeted feedback when constraints
fail, which we interpret as a cue for supervisory control in the architecture (Norman & Shallice,
1986; Cooper & Shallice, 2000).

2.2 Degree of Saturation Algorithm with Backtracking

The Degree of Saturation (DSATUR) algorithm assigns colors to graph vertices based on their
saturation degree, prioritizing vertices that are the most constrained—those having adjacent vertices
with the greatest variety of colors already assigned (Brélaz, 1979). DSATUR remains competitive
for graph coloring due to its heuristic efficiency, especially for sparse and mid-sized graphs, and
its direct operation on graph structures without requiring transformations typical of SAT solvers.
Recent studies (Yekezare et al., 2024; Schidler & Szeider, 2023) highlight its effectiveness, making
it a suitable choice for our symbolic solver. However, the traditional DSATUR algorithm targets the
optimization version of the graph coloring problem, minimizing the number of colors. For our work,
we adapt DSATUR into a satisfiability solver by constraining it with a fixed maximum number of
colors. A detailed description of the modified algorithm is provided in Supplementary Material
(Khandelwal et al., 2024). Unlike other solvers, DSATUR can be straightforwardly modified for
the decision version of the problem, making it a practical and adaptable choice for our symbolic
backend. In SOFAI-v2, DSATUR with backtracking plays the role of slow, controlled processing
that is selectively invoked by MC under conflict or low confidence, consistent with supervisory
control accounts in cognitive systems (Norman & Shallice, 1986; Cooper & Shallice, 2000).

3. Related Works

This section reviews the evolution of solvers for graph coloring, the application of LLMs in se-
quential decision-making tasks, and the emergence of neurosymbolic approaches for enhancing
decision-making processes. We also situate SOFAI-v2 within cognitive control theories that distin-
guish routine (automatic) processing from controlled, supervised processing (Norman & Shallice,
1986; Cooper & Shallice, 2000).
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Figure 1: SOFAI-v2 architecture with real-time metacognitive governance (supervisory control over
fast/automatic and slow/controlled processing)

3.1 Solvers for Graph Coloring

Traditional symbolic solvers have been extensively developed for this problem, leveraging algo-
rithms that systematically explore the search space. Early works like (Brélaz, 1979) introduced
efficient heuristics such as the DSATUR algorithm, significantly improving practical performance.
(Chaitin, 1982) applied graph coloring to compiler optimization, demonstrating the versatility of
symbolic methods. (Golumbic, 2004) provided a comprehensive treatment of graph algorithms, in-
cluding coloring techniques. Despite their accuracy, symbolic approaches often struggle with scal-
ability as CSP complexity increases, hindered by high computational overhead and slow processing
times (Dechter, 2003). Techniques like constraint propagation (Mackworth, 1977) and backtracking
algorithms (Bitner & Reingold, 1975) have been employed to enhance efficiency but are limited by
the exponential growth of the search space.

DSATUR selects at each step the uncolored vertex with the highest saturation degree (the num-
ber of distinct colors among its colored neighbors), breaking ties by degree (Brélaz, 1979). This
ordering aggressively focuses search on the most constrained vertices, yielding strong practical per-
formance. With appropriate data structures, per-step selection can be done in near O(logn) update
time, but the overall search with backtracking remains exponential in the worst case due to the NP-
completeness of graph coloring. In our setting, we couple DSATUR with backtracking under a fixed
color budget k: the procedure attempts to extend a partial assignment using at most k colors; fail-
ure to extend yields a certified UNSAT outcome, while success produces a constructive k-coloring
witness.

To address these limitations, neural solvers have been explored, utilizing machine learning tech-
niques to approximate solutions for graph coloring. For instance, (Li et al., 2018) proposed using
graph neural networks to tackle combinatorial optimization problems. Similarly, (Khalil et al., 2017)
introduced a framework that learns heuristics directly from data, improving scalability. However,
neural approaches often face challenges in strictly adhering to the constraints inherent in CSPs. In
contrast, our SOFAI setup directly targets the decision form of graph coloring with an explicit k,
integrating DSATUR+backtracking as S2 and using S1/SOFAI components to propose assignments
that are subsequently verified. Many end-to-end neural solvers are not readily adaptable to this
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satisfiability variant, which limits their comparability to our setting; we therefore retain them here
primarily for historical context and contrast, while focusing our technical discussion on DSATUR
and its role in our pipeline.

3.2 LLMs for Reasoning Tasks

Recent developments in LLMs have opened new avenues for addressing sequential decision-making
tasks, including CSPs. Various prompt engineering techniques have been proposed to enhance the
reasoning capabilities of LLMs (Brown, 2020; Wei et al., 2022; Kojima et al., 2022; Nye et al.,
2021; Wang et al., 2022). (Han et al., 2023) demonstrated that LLMs can arrive at correct answers
for graph-based problems through iterative prompting. However, the reasoning capabilities of LLMs
have been found to be fundamentally approximate retrieval in nature Kambhampati (2024), limit-
ing their effectiveness in precise reasoning tasks. This limitation is evidenced by studies showing
LLMs’ inability to solve planning problems (Valmeekam et al., 2022) and graph coloring prob-
lems (Stechly et al., 2024), where strict adherence to constraints is required (Jiang et al., 2023). In
cognitive-systems terms, LLM-only routines resemble contention among habitual schemas without
sufficient supervisory control (Norman & Shallice, 1986).

3.3 Neurosymbolic Approaches for Reasoning Tasks

Neurosymbolic approaches have gained considerable attention in addressing complex sequential
decision-making tasks such as automated planning (Fabiano et al., 2023), constrained grid naviga-
tion (Ganapini et al., 2022), and puzzle solving (Lin et al., 2024). These studies demonstrate that
integrating neural methods, such as LLMs, with symbolic solvers enhances performance on sequen-
tial decision-making tasks. To the best of our knowledge, neurosymbolic techniques have not been
explored in the context of graph coloring problems. To our knowledge, prior neurosymbolic stud-
ies have not targeted the graph coloring decision problem, nor integrated meta-level feedback with
a decision-oriented S2; SOFAI-v2 explicitly addresses this gap. Conceptually, SOFAI-v2 instanti-
ates a neurosymbolic cognitive architecture in which S1 (neural) handles routine proposals while
MC+S2 provide supervisory/controlled processing aligned with Norman–Shallice-style accounts
(Norman & Shallice, 1986; Cooper & Shallice, 2000).

4. The SOFAI Architecture

The SOFAI architecture, also referred to as SOFAI-v1 here (Booch et al., 2021), leverages a rule-
based metacognitive control mechanism that dynamically chooses between S1 and S2 solvers based
on a confidence threshold associated with S1’s outputs. S1 solvers are experience-based (and usually
data-driven) solvers, while S2 solvers are deliberative (and usually symbolic and rule-based) solvers.
SOFAI-v1 has been instantiated to planning (Fabiano et al., 2023) and constrained-grid navigation
(Ganapini et al., 2022), showing improvement on the performance compared to either symbolic or
data-driven solvers for the same class of problems.

In SOFAI-v1, the metacognitive component only chooses between S1 and S2 solvers, but does
not exploit the possible collaboration between these two kinds of solvers, nor does it provide feed-
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back to the solvers if they cannot solve the given problem instance. In this paper we consider a
generalized version of this architecture, called SOFAI-v2, shown in Figure 1, where the metacogni-
tive governance (called MC) can provide feedback and examples to a failing S1 solver (that for this
paper is an LLM), calling the S1 solver more than once, until either a correct solution is returned
or a maximum number of iterations is reached, which triggers the activation of an S2 solver. This
implements a neurosymbolic control loop: S1 produces routine proposals (automatic), MC performs
verification and trend monitoring (supervisory attention), and S2 executes controlled search when
conflicts persist, echoing contention scheduling with a supervisory system (Norman & Shallice,
1986; Cooper & Shallice, 2000).

Formally, let fS1(x,M) denote the solution produced by S1 for a problem instance x with ac-
cess to an episodic memory M . Here, M consists of previously encountered problem-solution pairs
generated by SOFAI-v2, i.e., pairs (xj , fSOFAI-v2(xj)), where fSOFAI-v2(xj) represents the final so-
lution that could have been generated by either S1 or S2. In the context of this paper, x corresponds
to a graph coloring decision problem instance defined by a graph G and a color bound k.

When a new problem instance x is presented to S1, a similarity function σ(x,M) is used to
retrieve a subset Mx ⊂ M of similar past instances, defined as:

Mx = {(xj , fSOFAI-v2(xj)) | σ(x, xj) ≥ α},

where xj ∈ M and α is a predefined similarity threshold. This subset, Mx, provides S1 with
additional contextual information from past solutions, enabling it to leverage SOFAI-v2’s previous
outputs for experience-guided context.

The correctness of solution for the graph coloring decision problem can be checked and eval-
uated in polynomial time by MC. The correctness score used by MC for graph coloring solutions
is:

C(fS1(x,Mx)) =

∑
(v,u)∈E 1[f(v) ̸= f(u)]

|E|
where:

• f(v) denotes the assigned color of vertex v,

• E denotes the set of edges in the graph.

If this correctness meets or exceeds a threshold θS1, solution is accepted. Otherwise, MC it-
eratively provides structured feedback F(fS1(x,Mx)) or simplified examples E(x). We set the
correctness threshold to 1, since 1 indicates full constraint adherence for the graph-coloring deci-
sion task; this ensures S1 outputs are only accepted when a complete, validator-checked coloring
is produced. MC also monitors S1’s solution correctness across iterative feedbacks, identifying
improvement trends defined by:

∀i ∈ {1, . . . ,m− 1}, Ci+1 > Ci

Failure to show improvement within m iterations results in MC invoking the fallback S2 solver,
ensuring robustness. Thus, the iterative feedback mechanism and episodic memory advances SOFAI-
v2 over SOFAI-v1, enhancing solver effectiveness via structured feedback and experience-based
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learning. Our theoretical commitments are: (i) dual-solver with metacognitive governance, (ii)
episodic memory for similarity-based retrieval, and (iii) verify-and-feedback loops grounded in
polynomial-time checks. The concrete instantiation (Mistral-7B as S1, DSATUR with backtracking
as S2) is an implementation detail; same principles transfer to other domains. Detailed algorithm
for the architecture is in Supplementary Material (Khandelwal et al., 2024).

5. Experimental Setup and Results

This section details methodology and experimental results evaluating various solver configurations
on graph coloring problems, emphasizing efficiency and success rate under systematic constraints.
We also report how iterative feedback and selective escalation can be interpreted as supervisory
control improving routine policy performance under increasing constraint conflict (Norman & Shal-
lice, 1986).

5.1 Data Generation and Problem Classification

Graph coloring instances were generated using the Erdős–Rényi model, controlling problem com-
plexity through three primary parameters:
Graph Size (n): Varies between n ∈ [5, 50] vertices, encompassing a diverse spectrum of problem
sizes.
Edge Probability (p): Adjusted within p ∈ [0.1, 0.9], influencing edge density and problem diffi-
culty.
Solvability Mix (m): The chromatic number (χ(G)) of each generated graph was computed using
the DSATUR algorithm. Problems were then categorized based on solvability, represented as m =
(a, b), where a and b denote percentages of solvable and unsolvable instances respectively:

• m = (100, 0): All problems solvable within constraints.

• m = (50, 50): Equal distribution of solvable and unsolvable problems.

• m = (0, 100): All problems unsolvable; set by choosing the number of available colors
k < χ(G), ensuring infeasibility.

For each graph size and edge probability pair 100 graph problems were generated and stored
in standardized DIMACS format for reproducibility. Github Repository: https://github.com/
khvedant02/CSP-SOFAI_v2 .

5.2 SOFAI-v2 Implementation for Graph Coloring

SOFAI-v2 integrates iterative feedback mechanisms and episodic memory to dynamically resolve
graph coloring problems. Figures 2 and 3 illustrate example prompts.

• Episodic Memory (M ): Stores historical graph instances with attributes—vertices, edges,
edge density, chromatic number—and solutions. A similarity function σ(x,M) retrieves rel-
evant past solutions:

Mx = {(xj , fv2(xj)) : xj ∈ M, d(x, xj) < α}
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where d(x, xj) = |attributes(x)− attributes(xj)|, and α is a similarity threshold.

• Iterative Feedback Mechanism: If the solver’s correctness score (defined in Section 4) is
insufficient, a two-step feedback process occurs:

1. Detect Conflict Pairs: Identify adjacent vertices assigned identical colors.

2. Template-Based Feedback: Algorithmically generate structured corrections (e.g., “Er-
ror: Vertices A and B are adjacent but have the same color”). Example of feedbacks is
given in Supplementary Material (Khandelwal et al., 2024).

• Improvement Evaluation and S2 Invocation: If no solution improvement occurs over five
iterations or if correctness remains below threshold, S2 is invoked as a fallback. If either
solver identifies an instance as unsolvable, the instance is labeled as UNSAT. Exceeding the
strict 200-second per-instance time limit results in failure, regardless of actual solvability.

• Example Generation (E(x)): A greedy-based algorithm generates simpler subgraph in-
stances to guide S1. Examples are detailed further in Supplementary Material (Khandelwal
et al., 2024).

This comprehensive integration ensures SOFAI-v2 leverages both real-time metacognitive gov-
ernance and experience-guided context for enhanced problem-solving effectiveness. Operationally,
this mirrors a supervisory system that monitors conflict and recruits controlled processing when
routine proposals fail (Norman & Shallice, 1986; Cooper & Shallice, 2000).
SOFAI-v1 vs SOFAI-v2: SOFAI-v2 introduces substantial advancements over previous works of
SOFAI (SOFAI-v1), by incorporating iterative feedback mechanisms and episodic memory, which
enhance the problem-solving capabilities of the S1 solver. Unlike SOFAI-v1, where problems not
solved by S1 are directly escalated to S2 without iterative refinement, SOFAI-v2 systematically
leverages historical data and adaptive feedback to optimize solutions before resorting to S2, thereby
improving efficiency and efficacy. Supplementary Material (Khandelwal et al., 2024) includes exact
prompts, feedback templates, and our DSATUR+BT pseudocode.

5.3 Performance Metrics and Evaluation

All solver configurations (Table 1) were evaluated under a strict 200-second time limit per instance.
Solver performance was measured using:

Success Rate(%) =

(
Number of Correct Solutions
Total Number of Problems

)
× 100 (1)

Average Time Taken =

∑n
i=1 ti
n

(2)

where ti is the solving time for the i-th successfully solved instance and n the total instances solved
within the time limit. Instances exceeding this limit are marked as failures, explaining occasional
0% success rates even when solvable theoretically. Results reported are averaged over three ran-
domized trials for reliability. To better understand solver efficiency beyond strict time constraints,
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Graph Coloring Problem Prompt

New Problem to Solve:
You are given an undirected graph with 2 colors available. Your task is to assign a color to
each vertex such that no two adjacent vertices share the same color.

Graph Representation:
- Number of vertices and edges: p edge 5 5.
- Edges between vertices are listed as follows:
e A B
e A C
e B C
e C D
e D E

Objective:
Assign a unique color to each vertex, ensuring that no two vertices connected by an edge
have the same color. Use no more than 2 distinct colors. Provide the color assignments for
each vertex in the format:
(Vertex Color)

Example Format:
(A 1)
(B 2)
(C 1)

Please provide the color assignment for the new problem to solve, or respond with "NOT
SOLVABLE" if it cannot be solved.

Figure 2: LLM prompt template for the graph coloring decision problem without using episodic
memory.

we conducted supplementary experiments without time limits, solely for comparative runtime anal-
ysis. From a cognitive perspective, increased success with iterative MC reflects benefits of supervi-
sory control over routine responding under higher constraint densities (Norman & Shallice, 1986;
Cooper & Shallice, 2000).

5.4 Results

This section presents an analysis of solver performance by systematically controlling key param-
eters. Unless mentioned, the edge formation probability is fixed to p = 0.5, allowing a focused
evaluation across varying graph sizes n and solvability mixes m to capture a broad range of prob-
lem configurations. Tables 2 and 3 provide the success rate and average time taken for each solver
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Episodic Memory Prompt

Problem:
p edge 4 4
e X Y
e Y Z
e Z A
e X A

Correct Solution:
(X 1)
(Y 2)
(Z 1)
(A 2)

End of Example

Figure 3: Example for episodic memory, which is added at the end of LLM prompt template in
Supplementary Material (Khandelwal et al., 2024).

Table 1: Descriptions of solver configurations employed in experiments.

ID Description

S1 Mistral-7B LLM
S2 DSATUR with Backtracking
SOFAI-v1 Combines S1 and S2 with rule-based MC
SOFAI-v2 Combines S1 and S2 with iterative MC
MC-S1-I[1-
5]

Metacognitive feedback (1–5 iterations) to re-
fine S1 solutions

configuration under these controlled conditions. The Supplementary Material (Khandelwal et al.,
2024) includes results for additional p values to supplement this focused analysis, providing a com-
prehensive view of solver robustness across varying edge densities. From these results, we aim to
address four key research questions (RQs) that provide deeper insights into SOFAI-v2 performance
and robustness.

RQ 1

How does SOFAI-v2 success rate compare to that of S1, S2, SOFAI-v1?

Answer to RQ 1: SOFAI-v2 demonstrates substantial improvements in success rates over other
solvers, particularly in challenging problem configurations involving unsolvable or mixed solvabil-
ity instances. Table 2 shows that for clearly solvable scenarios (m = (100, 0)), SOFAI-v2 matches
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Table 2: Success rates (%) across solvers and problem configurations for graph sizes from 5 to 50
with edge probability p = 0.5. Configurations m = (100, 0), m = (0, 100), and m = (50, 50) rep-
resent solvable, unsolvable, and a balanced mix of solvable and unsolvable instances, respectively.

Graph Size m(100,0) [%] m(0,100) [%] m(50,50) [%]

S1 S2 SOFAI_v1 SOFAI-v2 S1 S2 SOFAI_v1 SOFAI-v2 S1 S2 SOFAI_v1 SOFAI-v2

5 9.41 100 100 100 75 100 100 100 45.36 100 100 100
10 0 100 100 100 60.38 100 100 100 39.39 100 100 100
15 0 80 80 80 37.50 77.08 89.58 93.75 17.65 77.45 83.33 84.31
20 0 5 5 7.29 45.65 4.35 47.83 76.09 22.58 3.06 24.73 38.95
30 0 0 0 0 54.17 0 62.50 72.92 28.89 0 33.71 38.89
40 0 0 0 0 33.33 0 47.37 47.37 17.43 0 24.55 24.77
50 0 0 0 0 3.85 0 3.85 53.85 2.11 0 2.11 27.72

Table 3: Average time (seconds) for SOFAI_v1, SOFAI_v2, and S2 across graph sizes and config-
urations m(100, 0), m(0, 100), and m(50, 50).

Graph Size m(100, 0) (s) m(0, 100) (s) m(50, 50) (s)

SOFAI_v1 SOFAI_v2 S2 SOFAI_v1 SOFAI_v2 S2 SOFAI_v1 SOFAI_v2 S2

5 2 1 0 2 1 0 2 1 0
10 4 2 0 4 2 0 4 3 0
15 50 40 51 32 19 59 52 47 54
20 87 65 82 50 20 97 87 84 107
30 323 306 320 403 299 400 353 263 350
40 5043.2 4512.3 4995.8 5006.9 3511.7 4989.4 5012.1 3524.6 4992.7
50 20087.3 18034.9 19950.5 20044.2 14102.7 19920.6 20051.8 14178.3 19965.0

the optimal performance of SOFAI-v1 and S2 across smaller graph sizes. However, its key advan-
tage becomes apparent in more complex scenarios:

• For unsolvable scenarios (m = (0, 100)) at graph size 50, SOFAI-v2 achieves a success
rate of 53.85%, far surpassing the performance of SOFAI-v1 and S1, which each attain only
3.85%. This translates to an improvement of approximately 1298%.

• In mixed scenarios (m = (50, 50)), SOFAI-v2 maintains a success rate of 27.72%, substan-
tially higher compared to just 2.11% by SOFAI-v1 and S1.

These performance gains arise primarily from SOFAI-v2’s enhanced metacognitive governance,
which systematically leverages iterative solver feedback and episodic memory. This adaptive ca-
pability allows SOFAI-v2 to dynamically resolve constraints and effectively handle complex or
initially challenging instances that other solvers cannot reliably solve.

For the above results we set a fixed time limit of 200 seconds per problem. If a solver does not
finish within this time, it is counted as a failure. The average time taken results for this setting is
reported separately in the Supplementary Material (Khandelwal et al., 2024).
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RQ 2

How does SOFAI-v2 compare in terms of average time relative to SOFAI-v1 and S2?

Answer to RQ 2: SOFAI-v2 demonstrates substantial improvements in time efficiency compared to
SOFAI_v1 and S2, especially for complex configurations involving unsolvable or mixed scenarios.
As detailed in Table 3, in the unsolvable scenario (m = (0, 100)) at graph size n = 50, SOFAI-v2
requires approximately 14,000 seconds, whereas both SOFAI_v1 and S2 take around 20,000 sec-
onds. This corresponds to a substantial 30% reduction in average solving time. Similarly, for mixed
solvability scenarios (m = (50, 50)) at the same graph size (n = 50), SOFAI-v2 achieves the same
notable reduction of 30%, requiring only about 14,000 seconds compared to 20,000 seconds for SO-
FAI_v1 and S2. In fully solvable scenarios (m = (100, 0)), the improvements remain consistent.
For instance, at graph size 50, SOFAI-v2 completes solving tasks in roughly 18,000 seconds, a 10%
time reduction compared to SOFAI_v1 and S2 (each requiring about 20,000 seconds).

These time-efficiency gains are attributed to SOFAI-v2’s advanced metacognitive governance,
which intelligently manages solver interactions and computational resources based on real-time
feedback and memory-driven decision-making. This dynamic resource allocation enhances solver
efficiency, especially in challenging problem settings.

To ensure a fair and meaningful comparison of solver speed, we conducted this experiment
without imposing any time limit. This is appropriate because SOFAI-v1, SOFAI-v2, and S2 are all
complete solvers—that is, they can eventually solve or correctly determine the unsolvability of a
problem given enough time. In contrast, S1 alone does not satisfy this property, so it is excluded
from this timing comparison. This no-time-limit evaluation allows us to isolate and understand the
time-efficiency advantages introduced by metacognitive governance in SOFAI-v2.

RQ 3

Does increasing the number of iterations in the feedback loop lead to an increased success
rate in SOFAI-v2?

Answer to RQ 3: Yes, the iterative calling mechanism substantially enhances the performance of
SOFAI-v2’s S1 solver, driven by effective metacognitive governance. As illustrated in Figure 4,
repeated solver invocations with structured feedback consistently improve success rates across all
problem configurations:

• In fully solvable problems (m = (100, 0)), the initial success rate at iteration MC-S1-I1
(around 20% for graph size n = 5) improves substantially to nearly 80% by iteration MC-S1-
I5, a notable increase of 300%.

• For completely unsolvable instances (m = (0, 100)) at n = 10, success rates begin at ap-
proximately 60% (MC-S1-I1) and increase to 85% by MC-S1-I5, an improvement of 40%.

• In balanced solvability scenarios (m = (50, 50)) at graph size n = 10, success rates also see
meaningful improvements, increasing from approximately 40% (MC-S1-I1) to 60% (MC-S1-
I5), representing a 50% improvement.
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Figure 4: Success rates of SOFAI-v2’s S1 with iterative metacognitive feedback (MC-S1-I1 to MC-
S1-I5) across different graph sizes and problem configurations, showing the impact of iterations on
solver performance.
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Figure 5: Success rates across solvers as a function of edge probability in different problem config-
urations, highlighting the adaptability of SOFAI-v2 compared to traditional solvers.
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Figure 6: Time efficiency across solvers as a function of edge probability in different problem
configurations, showcasing SOFAI-v2’s performance in reducing average time taken.

These consistent improvements underscore how SOFAI-v2’s metacognitive governance im-
proves solver responses through iterative feedback, enhancing overall adaptability and efficiency
across diverse problem settings. For the above results, we set a fixed time limit of 200 seconds per
problem. If a solver does not finish within this time, it is counted as a failure.
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RQ4

How does the density of graph influence success rate and time across the considered solvers?

Answer to RQ 4: Edge probability (p) substantially affects both solvability and solving time across
graph coloring solvers, with SOFAI-v2 demonstrating superior adaptability and efficiency. Figure 5
shows that increasing p generally reduces success rates due to higher complexity from additional
edges. However, SOFAI-v2 consistently maintains higher success rates compared to other solvers:

• In fully solvable problems (m = (100, 0)), all solvers maintain high success rates as p in-
creases, with SOFAI-v2 performing comparably to S2 and SOFAI-v1.

• In completely unsolvable scenarios (m = (0, 100)), SOFAI-v2 notably outperforms others,
particularly at lower edge probabilities. For instance, at p = 0.1, SOFAI-v2 achieves a
94% success rate, considerably surpassing SOFAI-v1 (74%), S1 (68%), and S2 (51%). This
advantage remains pronounced (10-20%) even as p increases.

• In mixed scenarios (m = (50, 50)), SOFAI-v2 again excels, achieving a peak success rate of
about 72% at p = 0.1, approximately 15-25% higher than other solvers.

Regarding time efficiency (Figure 6), as p increases, solving times rise initially and then stabi-
lize. However, SOFAI-v2 consistently requires less time across all problem configurations:

• In the unsolvable scenario (m = (0, 100)), SOFAI-v2 solves problems substantially faster at
lower and mid-range probabilities. For instance, at p = 0.1, SOFAI-v2 averages 20 seconds
per problem, far less than SOFAI-v1 (55 seconds) and S2 (112 seconds).

• For mixed solvability scenarios (m = (50, 50)), SOFAI-v2 again demonstrates superior ef-
ficiency, 40-50% faster. Specifically, at p = 0.1, SOFAI-v2 solves problems in about 70
seconds, compared to SOFAI-v1’s 100 seconds and S2’s 108 seconds.

Overall, SOFAI-v2’s robust metacognitive governance enables it to adapt efficiently and effec-
tively to varying complexities induced by changing edge probabilities, achieving higher success
rates and superior time efficiency. For the above results we set a fixed time limit of 200 seconds per
problem. If a solver does not finish within this time, it is counted as a failure.

5.5 Other Considerations

We also explicitly address concerns regarding context window limitations inherent in modern LLMs.
Although iterative prompting in our method increases token consumption, our analyses confirm that
token usage remains comfortably within the Mistral-7B model’s 32k-token context limit, even under
extreme conditions (graph size 100, edge probability 0.9, and five iterations):

• Graph Representation (DIMACS format): approximately 1500 tokens

• Initial Prompt & Instructions: approximately 500 tokens
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• Metacognitive Feedback per iteration (×5): approximately 2500 tokens (500 tokens each)

• Episodic Memory Retrieval per iteration (×5): approximately 5000 tokens (1000 tokens each)

• LLM Response per iteration (×5): approximately 5000 tokens (1000 tokens each)

• Accumulated Prompt per iteration (including previous responses, ×5): approximately 15,000
tokens (3000 tokens each iteration)

In total, even the worst-case scenario results in approximately 24,500 tokens, well within Mistral-
7B’s 32k-token context window. Consequently, context-window overflow is not an issue in our ex-
periments. Operationally, the metacognitive governance budgets information (problem, feedback,
episodic examples) so that fast/automatic proposals remain verifiable within resource bounds, align-
ing with supervised control over routine processing (Norman & Shallice, 1986; Cooper & Shallice,
2000).

Additionally, to account for the inherent variability in LLM output across runs, we repeat all
experiments involving SOFAI-v1, SOFAI-v2, and S1 three times using the same set of problem
instances. For success rate evaluation, a problem is considered a success if the solver succeeds
in any of the three runs. For average time taken, we report the minimum time observed across
the three trials. This choice reflects a conservative estimation of each system’s upper potential in
ideal conditions and avoids penalizing performance due to stochastic failures. Such a best-of-n
(here n=3) strategy is commonly used in LLM evaluations to mitigate randomness and highlight
consistent solver capabilities (Kang et al., 2025; Chow et al., 2024). Cognitively, this also controls
for noise in routine responding while assessing whether supervisory interventions reliably reduce
errors.

We also note that SOFAI-based solvers (and S1) can declare UNSAT without a constructive
certificate, whereas S2’s UNSAT arises from explicit search. This asymmetry can bias results
on mixes containing unsatisfiable instances. However, the systematic variation in success rates
across graph sizes and densities indicates the behavior is not arbitrary and reflects nontrivial problem
sensitivity. A full proof-producing pipeline for UNSAT is orthogonal to our current scope; for
automatic and quick evaluation, we accept such declarations, and we flag this as a limitation to be
addressed in future work

5.6 Implications and Comparisons with Prior Work

This study broadens the scope of neurosymbolic systems by applying them to graph coloring prob-
lems. It demonstrates that integrating LLMs with traditional symbolic solvers, guided by metacog-
nitive governance, enhances accuracy and efficiency. Unlike previous applications that primar-
ily leveraged LLMs for sequential decision-making tasks (Valmeekam et al., 2022; Stechly et al.,
2024), SOFAI-v2 directly addresses constraint-adherence limitations through iterative feedback and
strategic use of symbolic reasoning. Viewed through cognitive control, S1 provides routine propos-
als, while MC and S2 supply supervisory/controlled processing when conflicts persist, consistent
with contention scheduling and supervisory attention (Norman & Shallice, 1986; Cooper & Shal-
lice, 2000). This neurosymbolic framing clarifies why SOFAI-v2 improves success rate and time
efficiency on constraint satisfaction problems.
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6. Conclusion and Future Work

We introduced SOFAI-v2, a neurosymbolic architecture that integrates a fast, episodic memory-
based LLM (S1) with a slow, deliberative symbolic solver (S2), enhanced by real-time metacog-
nitive governance. Our empirical evaluations across various graph coloring problems confirm that
SOFAI-v2 outperforms traditional symbolic solvers and its predecessor, SOFAI-v1, in both success
rates and time efficiency, especially within complex problem configurations. SOFAI-v2 employs
iterative metacognitive feedback and episodic memory-based iterations to enable S1 to refine its
response. This effectively overcomes the limitations of LLMs in constraint adherence for CSPs. By
leveraging episodic memory and adaptive feedback, SOFAI-v2 improves the accuracy and efficiency
of solving CSPs, indicating the value of cognitively informed, neurosymbolic architectures.

The observed improvements are consistent with dual-process theories: S1 generates a fast, po-
tential solution; the metacognitive controller checks it for constraint adherence and uncertainty,
requests targeted revisions when needed, and escalates to S2 only when necessary; S2 then per-
forms slow, symbolic search as invoked. Episodic retrieval provides additional context from prior
instances to support S1’s proposal and the controller’s checks. In this arrangement, SOFAI-v2 re-
alizes a control loop that finds a trade-off between speed and reliability in a resource-constrained
setting.

Future work will scale SOFAI-v2 to larger and more varied problem sets, explore different graph
models, and apply the architecture to other CSPs and sequential decision-making tasks. We will also
investigate learning-based MC policies and richer memory retrieval, and examine correspondences
to cognitive-control signals (e.g., conflict costs) that could enable tighter links to computational
cognitive neuroscience. Concretely, we will design human-aligned probes (e.g., speed–accuracy
manipulations, conflict-cost perturbations, and memory cueing/interference) to test whether SOFAI-
v2’s control dynamics mirror classic findings on supervisory attention and conflict-driven effort
allocation.
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