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Abstract 
Understanding how to build cognitive systems with commonsense is a difficult problem.  Since 
one goal of qualitative reasoning is to explain human mental models of the continuous world, 
hopefully qualitative representations and reasoning have a role to play.  But how much of a role?  
Standardized tests used in education provide a potentially useful way to measure both how much 
qualitative knowledge is used in commonsense science, and to assess progress in qualitative 
representation and reasoning.  This paper analyzes a small corpus of 4th grade science tests from 
US classrooms and shows that QR techniques are central in answering 13% of them, and play a 
role in at least an additional 16%.  We found that today’s QR techniques suffice for these 
questions, but integrating QR with broader knowledge about the world and automatically 
understanding the questions as expressed in language and pictures provide new research 
challenges. 

1. Introduction
When children are learning about science, their initial education is qualitative in nature.  It ties 
scientific concepts to everyday experiences, teaching them how to think about the world around 
them in terms of more fundamental ideas, including processes (e.g. evaporation, predation) and 
patterns (e.g. life cycles, food webs).  Since these concepts are used in education, there are 
teaching materials that are accessible to children (and easier for natural language understanding 
systems to learn from) and standardized tests that measure knowledge in human-normed ways. 
For example, the New York State Board of Regents makes their exams publically available after 
they have been given, providing a corpus that supports research. Thus commonsense science, as it 
is sometimes called, provides an excellent frontier for research on qualitative reasoning in a 
cognitive systems context, since it involves broad-ranging knowledge and multiple kinds of 
reasoning. 

This is not a novel observation.  Project Aristo (Clark, 2015; Clark et al. 2016) identified 
elementary school science as a productive research area for studying learning by reading and 

1 https://www.kaggle.com/c/the-allen-ai-science-challenge/ 
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commonsense reasoning.  The Science Learning and Teaching working group (which Forbus is 
part of) adopted such tests as the first phase in a longer research trajectory, with the long-term 
(2050) goal of AI systems that can help any person learn any area of science, at whatever level 
they are interested in.  This effort is one of multiple efforts which, collectively, are being 
designed as a replacement for the Turing Test (Forbus, 2016).   

That such tests require deeper knowledge can be seen from the recent Allen Institute Science 
Challenge on Kaggle1, which used 8th grade science tests.  The tag line was “Is your model 
smarter than an 8th grader?”  The answer, for the 738 teams competing, was clearly no.  The 
questions were limited to multiple choice tests, without diagrams.  The rules of the competition 
were such that no licensed data or software could be used, i.e. no resources from the Linguistic 
Data Consortium, nothing from Cyc, Watson, or any other system or data that could not be 
completely open-licensed.  Thus the only techniques applied were off-the-shelf machine learning 
components (including deep learning) and statistical NLP.  The best scores achieved on this 
challenge – which is only a subset of the types of questions on real exams – topped out at 60%2.  
This suggests that deeper knowledge is indeed needed to achieve 8th grade science literacy.  Our 
analysis below argues further that QR is needed as part of that deeper knowledge.  

This paper examines how useful qualitative reasoning might be in elementary school science 
tests.  We focus on 4th grade examinations, since that is what Project Aristo has been examining.  
A prior study of such exams (Clark et al. 2013) provided a useful decomposition of question 
types, but did not take into account a qualitative reasoning perspective.  Hence the questions we 
ask here are (1) what fraction of exam questions use qualitative representations? (2) How well do 
today’s QR approaches handle the reasoning needed for such questions? After examining the 
contents of six Regents 4th grade exams, the answers so far are (1) qualitative knowledge is 
needed for at least 29% percent of exam questions and (2) the standard QR-related questions are 
naturally handled by existing qualitative reasoning techniques. 

2. An Analysis of Science Tests
Much QR research has focused on specific scientific and engineering domains.  By contrast, 
commonsense science is remarkable for its breadth – such tests cover physics, biology, chemistry, 
and other areas.  Instead of a small vocabulary of structural elements (e.g. circuit components), 
the entire range of everyday objects is fair game.  After all, the purpose of learning science in 
elementary school and middle school (grades 1-6 and grades 7-8th respectively, in the US) is to 
ground scientific ideas in a child’s experience.  In essence, grounding such ideas serves to both 
enable children to understand the world around them and to facilitate their learning by relating 
challenging concepts to things they already understand. 
 Some questions, such as Figure 1, look exactly like traditional QR scenarios.  We call these 
standard QR questions. By viewing the flame as the source, the wire as the destination, and the 
contact surface with the flame as the path, any reasonable model of heat flow will predict that the 
temperature of the wire will rise. But translating that insight into heat travelling through the wire 
involves thinking of the wire itself as a kind of path, which makes the decoding of the language 
more subtle.   

Some problems set up scenarios that are used in multiple questions.  Here is an example: 

1 https://www.kaggle.com/c/the-allen-ai-science-challenge/ 
2 Public presentations, Oren Etzioni, Peter Clark, AAAI 2016. 



ELEMENTARY SCHOOL SCIENCE AS A COGNITIVE SYSTEM DOMAIN: HOW MUCH QR? 

3 

One hot, summer day it rained very heavily.  After the rain, a plastic pan on a picnic 
table had 2 cm of rainwater in it.  Four hours later, all of the rainwater in the pan was 

gone. 

One question asked about this scenario was which process caused the disappearance, giving 
condensation, evaporation, precipitation, and erosion as choices.  Examining the conditions and 
influences of these processes enables zeroing in quickly on the answer.  Another question was, if 
the day was cool instead of hot, would the rainwater have disappeared slower, faster, or in the 
same amount of time?  This is a classic comparative analysis questions (Weld, 1986, 1990), and 
again well within the scope of today’s QR systems. 

 Other types of questions require QR, but involve deeper visual reasoning, e.g. comparing which 
of two inclined planes it would be harder to push a weight up, or choosing among visual 
configurations as answers to a question posed.  Prior research suggests that such problems can be 
handled via QR, but with additional complexities of visual reasoning, case-based reasoning, or 
both (e.g. Klenk et al. 2011; Chang et al. 2014). Hence we argue that, to fully capture human 
capabilities in commonsense science, we should expand our notion of domain theories to include 
both specific examples and knowledge of patterns of behavior.  We call questions that make use 
of such knowledge extended QR questions, because answering them with off-the-shelf purely 
first-principles QR techniques might be doable, but it would be a stretch.   
 Closely related are questions about patterns found in nature, e.g. food webs, the water cycle, 
and life cycles of different sorts of living creatures.  Such questions are often accompanied by 
diagrams, showing for example the participants in a food chain or the stages in a life cycle.  We 
refer to these as pattern questions.  Once a pattern is introduced, follow-on questions often end up 
being standard QR questions.  For example, questions about food webs typically require 
performing comparative analysis on how one population’s size might change given that another 
population changes. However, other pattern questions simply involve placing states in a correct 
sequence, e.g. the phases of an animal’s life cycle.   

The drawing below shows a copper wire with a wooden handle being held in a 
flame.   

 
After a few minutes, what will most likely happen? 

A. The light will change to electricity. 
B. The heat will travel through the wire. 
C. The flame will get brighter. 
D. The flame will go out. 

 
Figure 1: An example test question 
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 While the picture in Figure 1 may help a child understand the problem better, the caption 
provides, in some sense, all that is needed to solve the problem.  But in some problems a deeper 
understanding of diagrams is necessary to answer the question.  Questions often involve decoding 
information from graphs, tables, and/or drawings.  We call such questions visual questions.  For 
example, each exam typically has at least one question about graphs, which requires reading the 
graph and answering qualitative or quantitative questions about it (e.g. given a population graph, 
“How many times was there a decrease in the deer population from one year to the next […]?”)  
Problems with pictures often involve recognition, e.g. the different animals in a food web, the 
different stages in a life cycle, weather icons on a map.  Sometimes these pictures have labels, 
when recognition would be too demanding, as in Figure 2.  This problem is especially interesting 
because it requires integrating knowledge across two modalities, language and vision, and 
generating an answer, rather than selecting from multiple choice answers.   

 Any question that does not fit in one of the above categories we classify as a world knowledge 
question.  This is a grab-bag category, involving many different kinds of knowledge.  For 
example, some kinds of questions involve properties of objects, e.g. which object from a list (wax 
crayon, plastic spoon, rubber eraser, iron nail) is the best conductor of electricity?  These involve 
QR, in that conductivity can be thought of as a parameter – while binary in this case, a harder 
question would involve iron, tap water, and salt water.  But many others involve knowledge about 
non-continuous aspects of the world.  For example, “which characteristic can a human offspring 
inherit?”, where the answers include facial scars, long hair, broken leg, and blue eyes.  Another 
sub-category of questions concern function, e.g. “The functions of a plant’s roots are to support 
the plant and”, with “make food”, “produce fruit”, “take in water and nutrients”, and “aid in 
germination” as alternatives.   
 While more fine-grained analyses of commonsense science questions are possible, this set of 
categories suffices to address the first of our two questions.  To identify the degree to which QR 

A company bought land in 1989 to build apartments.  The diagram labeled 1989 shows the land before the company 
built the apartments.  The diagram labeled 2001 shows the same land after the company built the apartments.   

Describe one positive way and one negative way that the organisms living in the area have been affected by the 
changes shown in the diagrams. 

Figure 2: A multimodal scenario problem 
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is needed in commonsense science, we analyzed a corpus of six 4th grade science exams3.  The 
results are shown in Table 1. 
 This analysis suggests that QR knowledge about continuous causality is a necessary part of 
doing well on the exam: the highest score a student could get would be 71% otherwise.   On the 
other hand, QR is not sufficient to do well on the exam, as indicated by 71% of the questions not 
involving QR.  
 

Type # Problems % 
Standard QR 31 13% 
Extended QR 38 16% 

Patterns 36 15% 
Visual 55 22% 
World 85 35% 

Table 1: Analysis of question types on science exams 

3. Solving QR-based Problems   

Now let us turn to the second question: Can current QR techniques solve the QR problems that 
arise in such science tests?  To examine this question, we selected the set of 31 standard QR 
questions from the corpus of New York Regents exams.  To factor out issues in natural language 
understanding, we hand-coded queries corresponding to each question.  We used knowledge base 

                                                
3 Specifically, the New York Regents science exams for 2004, 2005, 2006, 2009, 2010, and 2011.  These 

and exams for other years and grade levels are available on their web site. 
 

(isa FreezingProcess QPProcessType) 
(mfTypeParticipant FreezingProcess ?thing-freezing LiquidTangibleThing 
                   focusOf) 
(mfTypeParticipant FreezingProcess  
 ?sub ChemicalCompoundTypeByChemicalSpecies substanceOf) 
(mfTypeParticipantConstraint FreezingProcess 
                             (substanceOfType ?thing-freezing ?sub)) 
(mfTypeParticipantConstraint FreezingProcess 
                 (relationAllInstance freezingPoint ?sub ?f-temp)) 
(mfTypeCondition FreezingProcess 
                (qLessThan (TemperatureFn ?thing-freezing) ?f-temp)) 
(mfTypeBiconditionalConsequence FreezingProcess  
 (hasQuantity ?self (SolidGenerationRateFn ?self))) 
(mfTypeConsequence FreezingProcess  
 (qGreaterThan (SolidGenerationRateFn ?self) 0)) 
(mfTypeConsequence FreezingProcess  
 (qprop- (SolidGenerationRateFn ?self) 
          ((QPQuantityFn Temperature) ?thing-freezing))) 
(mfTypeConsequence FreezingProcess  
 (i+ (AmountOfFn ?sub Solid-StateOfMatter ?thing-freezing) 
      (SolidGenerationRateFn ?self))) 
(mfTypeConsequence FreezingProcess  
 (i- (AmountOfFn ?sub Liquid-StateOfMatter ?thing-freezing) 
      (SolidGenerationRateFn ?self))) 

Figure 3: Representation of the process of freezing 
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contents from ResearchCyc4, with our own extensions for qualitative, visual, and analogical 
reasoning and learning.   

  While our KB already had a substantial portion of the knowledge needed, some extensions 
were required. We used qualitative process theory (Forbus, 1984) to express the new domain 
knowledge.   Specifically, we encoded 8 additional physical processes (precipitation, evaporation, 

erosion, freezing, melting, birth, death, growth) and 5 other model fragments (buoyancy, 
organism populations, standard gravity, predator/prey, friction, and magnetism), along with 6 new 
types of quantities (fluid level in a container, fluid displaced, heat produced, friction force applied 
against an object, magnetic force attracting an object, and roughness) and 2 ordinal relationships 
(cool objects have “less” temperature than hot objects and smooth objects have “less” roughness 
than rough objects).  The rest of the QP domain theory came from previously existing knowledge.  
It consisted of 2 types of processes (boiling and heat flow) and 7 types of quantities (population 
size, mass, weight, volume, temperature, size, amount of a substance, and distance). Extending 
the domain theory required approximately two months of work.  Next we examine some 
examples of the knowledge involved, to ground the discussion. 
 Figure 3 shows the description of the axioms for the process of freezing (FreezingProcess) as 
an example.  That it is a type of process specified by QP theory is indicated by the isa statement 
placing it as a member of the collection QPProcessType, whose instances are members of 
QPProcess, e.g. a particular instance of freezing.  Type-level predicates are used to define model 
fragment types.  The participants are specified by mfTypeParticipant, e.g. here 
FreezingProcess has three participants, whose types are the third argument (e.g. 
LiquidTangibleThing, a pre-existing concept in Cyc), whose template variables are the second 
argument (e.g.?thing-freezing), and whose fourth argument is a role relation that is used to 
refer to this participant in axioms about instances (e.g. solidOf).  mfTypeCondition expresses 
the conditions that must hold for an instance to be active.  These are interpreted as conjunctions, 
although this process has only one, i.e. that the temperature of the thing freezing is less than its 
freezing point.  The consequences are expressed via mfTypeConsequence and 

                                                
4 http://www.cyc.com/platform/researchcyc/ 

(isa ObjectFloatingInFluid ConceptualModelFragmentType) 
(mfTypeParticipant ObjectFloatingInFluid ?csolid SolidTangibleThing 
                   solidOf) 
(mfTypeParticipant ObjectFloatingInFluid ?cfluid FluidTangibleThing 
                   fluidOf) 
(mfTypeParticipant ObjectFloatingInFluid ?b-mf FluidDisplacement 
                   displacementOf) 
(mfTypeParticipantConstraint ObjectFloatingInFluid 
                            (fluidOf ?b-mf ?cfluid)) 
(mfTypeParticipantConstraint ObjectFloatingInFluid 
                            (contains-Underspecified ?cfluid ?csolid)) 
(mfTypeCondition ObjectFloatingInFluid (activeMF ?b-mf)) 
(mfTypeCondition ObjectFloatingInFluid  
 (qLessThanOrEqualTo 
  ((QPQuantityFn Weight) ?csolid) 
  ((QPQuantityFn Weight) (FluidDisplacedFn ?b-mf)))) 
(mfTypeConsequence ObjectFloatingInFluid 
 (qprop (FluidDisplacedFn ?b-mf) ((QPQuantityFn Weight) ?csolid))) 

Figure 4: Representation of the model fragment describing a floating object 
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mfTypeBiconditionalConsequence, the latter for statements that can only be true when an 
instance is active.  An example of such a constitutive relationship is the existence of a rate at 
which the process occurs, which does not make sense outside the process acting.  The usual 
causal qualitative mathematics of QP theory appear in the consequences, e.g. i+ and i- for direct 
influences (i.e. partial specifications of derivatives) and qprop and qprop-, for indirect influences 
(i.e. partial specifications of functional dependencies).    Wherever possible, we link these 
descriptions into the Cyc ontology, e.g. LiquidTangibleThing comes from the Cyc ontology, so 
that axioms about them already in the knowledge base can provide leverage.   Sometimes the Cyc 
ontology takes a slightly different perspective on the world.  For example, the Cyc concept of 
Temperature concerns specific values for temperatures, e.g. Hot or (DegreeCelsius 25).  In QP 
theory, quantities are fluents, in that they are not values but conceptual entities whose value 
changes over time.  We link the two notions via the logical function QPQuantityFn, a second-
order function whose domain is Cyc quantities and whose range are functions denoting fluents, 
here ((QPQuantityFn Temperature) ?thing-freezing) denotes the fluent representing the 
temperature of ?thing-freezing.   
 Figure 4 provides an example of a model fragment, a description of an object floating in a fluid 
(ObjectFloatingInFluid).  It is an instance of ConceptualModelFragmentType, that is, 
instances of this type of model fragment are conceptual knowledge about the situation. (Some 
types of model fragments indicate the existence of something, such as a contained fluid or 
population, those are instances of PhysicalModelFragmentType.)  Note the multiple condition 
statements, which are interpreted conjunctively.  activeMF is true when the model fragment 
instance which is its argument is active.   

The queries to solve these problems were relatively straightforward applications of qualitative 
reasoning.  For example, some problems describe a situation and ask what kind of process is 
involved in the change that is occurring in it.  Performing model formulation on the situation and 
inspecting the instantiated processes provides a straightforward way to answer such questions.  
Sometimes chaining is needed, that is, searching through dependencies among model fragments.  
For example, the question “Which form of energy is needed to change water from a liquid to a 
gas?” with answers being “heat”, “mechanical”, “chemical”, and “sound” requires a breadth-first 
search through model fragments, beginning with model fragments whose consequences involve 
direct influences on amounts of substances of different phases, a negative influence on the liquid 
version and a positive influence on that substance in the gas phase, and expanding on model 
fragments that are mentioned as conditions, in this case, heat flow.  When questions involve 
comparisons, differential qualitative analysis (Weld, 1986, 1990) is used to determine the changes 
to quantities of interest that have occurred.  
 To provide a sense of how these problems are solved, let us return to the scenario presented 
earlier:  

(isa LiquidTangibleThing) 
(substanceOfType rainwater014 Water) 
(isa air435 GaseousTangibleThing) 
;;From “the rainwater … sat outside in the hot air” 
(touches-Directly rainwater014 air435)   
;; QPQuantityFn converts Cyc’s value notion to QP’s fluents 
(qEqualTo ((QPQuantityFn Temperature) air435) Hot) 
(qEqualTo ((QPQuantityFn Temperature) rainwater014) Hot) 

Figure 5: Partial representation of Q7 evaporation scenario 
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One hot, summer day it rained very heavily.  After the rain, a plastic pan on a picnic table had 2 cm of 
rainwater in it.  Four hours later, all of the rainwater in the pan was gone. 

(Q7) Which process caused the rainwater in the pan to disappear as it sat outside in the hot air? 

(Q8) If the day were cool instead of hot, the rainwater in the pan would have disappeared ______ 

Q7 is answered by constructing a qualitative model for the state of the scenario in which 
 water was sitting in a pan and examining the influences on it (see Figure 5), to see which process 
is responsible for decreasing the amount of water.  As Figure 5 illustrates, the model fragments 
are tied to the Cyc ontology, including the use of Cyc’s ScalarInterval system for 
underspecified values (e.g. Hot), but which have ordinal relationships tied to other underspecified 
values in the same dimension (e.g. Cool).  For Q8, an additional qualitative state is created to 

represent the cooler day, with everything the same except for that the temperatures of the air and 
rainwater are Cool instead of Hot.  We use analogy to perform comparative analysis: the 
analogical mapping5 provides information about how the two states correspond, in both their 
values and their causal structure. Figure 6 illustrates the correspondences computed between these 
two states.   The system checks first to see if there is enough information about the goal quantity 
to directly determine if it is different.  (For example, if in a different question the system were 
asked about the temperature of the desert during the day (Hot) and during the night (Cool), the 
ordinal difference between these values would be sufficient to answer the question.)  Otherwise, it 
looks for causal structure that specifies the goal quantity in terms of others, and recursively seeks 
their comparative values.  Here, the aligned causal influences (qprop relations) linking the 

                                                
5 Mappings are computed using SME, the Structure-Mapping Engine (Falkenhainer et al. 1989; Forbus et 

al. in press). 

 
Figure 6: Partial depiction of the analogical mapping between two evaporation scenarios for 

differential qualitative analysis. Correspondences are indicated match hypothesis (“mh”) triangles.  
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evaporation rate and temperature of each scenario enable the system to infer that, since the 
temperature is reduced, and the rate of evaporation depends on temperature, then the rate of water 
disappearance would be slower in the new scenario. 
  Using existing qualitative reasoning techniques, the system was able to solve all 31 standard 
QR problems. Less success was achieved on the extended QR problems.  Of the few we tackled, 
none were solvable with strictly first-principles QR techniques.  They require more knowledge of 
the everyday world.  Consider again the problem shown in Figure 2.  This problem requires 
inferring that there are fewer trees after construction than before construction.  This is indicated 
schematically by there being fewer trees on the right, but also by the associated labels, e.g. 
“forest” versus “trees”.  Students must know that trees provide habitats for birds and squirrels, 
which are part of what helps determine the size of their populations, and hence that fewer trees 
means less habitat and hence a negative effect on population.  On the other hand, adding feeders 
improves their food supply.  (Whether or not this benefit outweighs the loss of food supply from 
habitat loss seems dubious, but nevertheless it is a positive influence, even if dominated by 
another factor.)  Other examples involve richer interactions between dynamics and spatial 
knowledge (e.g. knowing that liquids take the shape of their container).  Again, some forays into 
representing these ideas have been done before in QR, e.g. Kim’s bounded stuff ontology (Kim 
1993), but domain theories which tightly integrate qualitative dynamics and spatial 
representations are few and limited in coverage currently.  Accumulating examples to reason 
from (e.g. Klenk et al 2011), plus more flexible multimodal interaction (e.g. Chang & Forbus, 
2015) should be helpful for teaching systems the knowledge that they need to tackle problems 
like these. 

4. Related Work   
The most successful system thus far in answering elementary science exam questions is AI2’s 
Aristo (Clark et al. 2016) combined techniques from information retrieval, statistical NLP, and 
rule-based systems. The success of Aristo relied on both the ensemble of techniques and its 
ability to estimate which technique’s answer is most likely to be correct.  With its diverse set of 
techniques Aristo achieved a score of 71.3% on a corpus of 129 Regents 4th grade non-diagram 
multiple-choice-only questions.  In the analysis of its performance, five types of questions were 
identified as being challenging for Aristo to solve. The question types were comparison questions, 
simple arithmetic reasoning, complex inference, structured questions, and story questions.  In our 
application of QR techniques to Regents exam questions, we found that a large proportion of the 
31 questions solvable by our techniques were comparison and story questions, indicating that the 
addition of QR to Aristo may boost its performance. 
 We further note that most attempts to solve problems such as these focus on information 
retrieval techniques over text (e.g. Sachan et al. 2016), or lightweight knowledge representation 
schemes where the tokens in semi-structured representations are still words or phrases (e.g. 
Khashabi et al. 2016).  By contrast, we are using deductive reasoning over conceptual 
representations.  While we agree that there are roles for maintaining linguistic information in 
extracting knowledge from text, we also believe that the refinement of such knowledge into 
conceptual knowledge is a crucial, but underexplored, component of learning by reading.  Efforts 
to date at such refinements include Semantic Construction Grammar (Schneider & Witbrock, 
2015) and Companion-based learning by reading (Barbella & Forbus, 2015).   
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One of the foundational works for qualitative reasoning was Hayes’ (1979) naïve physics 
manifesto, which encouraged the field to look at commonsense physical reasoning.  Some 
research has focused on broad, axiomatic accounts of phenomena, e.g. liquids (Hayes 1985), 
matter (Davis, 2010), and containers (Davis et al. 2013), but none of these efforts were tied into a 
large, overarching ontology.  We believe that integrating such efforts into the Cyc ontology 
(which can be used freely, by staying with OpenCyc) would radically improve the ability to 
create the kind of larger-scale, integrated accounts needed to broadly cover commonsense 
science.  In 4th grade science, qualitative simulation seems unnecessary, but that is unlikely to be 
true at higher grades, at which point qualitative simulators like Garp3 (Bredeweg et al. 2009) may 
prove valuable. 

5. Discussion and Future Work 
We agree with AI2 that commonsense science is a useful approach to studying the nature of 
commonsense reasoning more broadly.  We are encouraged that over a quarter of the exam 
questions involve qualitative representations and reasoning, and that standard QR techniques 
perform well on this portion of 4th grade exams.  Prior research by Bruce Sherin6 indicates that 
the content of middle-school science remains focused on qualitative knowledge, to provide a firm 
foundation for integrating with algebra and calculus later on.  An analysis of 8th grade exams, in 
progress, looks likely to provide additional evidence for the centrality of qualitative 
representations and reasoning for commonsense science. 
 We note that, like in prior projects, the broad contents of the ResearchCyc knowledge base 
provide significant leverage for this kind of research.  Being able to draw on a wide-ranging 
ontology is useful to reduce tailorability, but more importantly, it provides leverage on its own 
(e.g. ScalarInterval as a simple form of qualitative value well-suited for capturing the 
ambiguities inherent in natural language). Even when there are design choices that are not optimal 
from a particular perspective (e.g. formalizing quantities as values instead of fluents), simple 
coercions typically suffice to put the knowledge in form useful for QR.   
 Much future work remains, of course.  First, we plan to extend the Companion natural language 
facilities to automatically interpret exam questions to generate the kinds of queries that here were 
created by hand.  Second, we plan to extend our learning by reading work (e.g. Lockwood & 
Forbus, 2009; Barbella & Forbus, 2015) to provide the broad-scale knowledge needed to handle 
these kinds of questions.  Third, we plan to use a combination of computer vision techniques and 
sketch understanding (Forbus et al. 2011) to automatically process the visual aspects of questions.  
Finally, we plan on exploring interactive training of Companions on commonsense science, by 
posing scenarios and asking questions, including follow-up questions aimed at exposing 
misconceptions gleaned from learning by reading.  This will help create the science base for a 
new generation of intelligent tutoring systems, as well as a foundation of commonsense 
knowledge that could be valuable for many potential applications of personal assistant software. 
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