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Abstract

Goal recognition is the problem of inferring the (unobserved) goal of an agent, based on a se-
quence of its observed actions. Inspired by mirroring processes in human brains, we advocate goal
mirroring, an online recognition approach that uses a black-box planner to generate recognition
hypotheses. This approach avoids the prevalent assumption in current approaches, which rely on
a dedicated plan library, representing all known plans to achieve known goals. Such methods are
inherently limited to the knowledge represented in the library. In this paper, we (i) describe a novel
online goal mirroring algorithm for continuous spaces; (ii) evaluate a novel heuristic for choosing
between competing recognition hypotheses; (iii) contrast machine and human recognition in two
challenging domains, revealing insights as to human capabilities; and (iv) compare mirroring to
library-based methods.

1. Introduction

Goal recognition is the problem of inferring the (unobserved) goal of an agent, based on a sequence
of its observed actions (Blaylock & Allen, 2004). It is a fundamental research problem in artificial
intelligence, closely related to plan, activity, and intent recognition (Sukthankar, Goldman, Geib,
Pynadath, & Bui, 2014). The problem has many applications in continuous environments, e.g., for
recognizing intended gestures (Sezgin & Davis, 2005), user commands (Blaylock & Allen, 2004)
or navigational goals (Zhu, 1991).

The prevalent approach to goal recognition relies on a dedicated plan recognition library, which
represents all known ways to achieve known goals (Sukthankar et al., 2014). Recognition methods—
sometimes applicable to continuous domains—vary in the expressiveness of the representation and
efficiency of the inference algorithms used. While powerful when the plans are known, these meth-
ods tend to fail when the observations come from an unknown plan to achieve a known goal. An
additional difficulty is raised when adding goals to the set of recognizable goals, as plans for them
need to be inserted in the library, in order to be recognized.

Moreover, the use of a dedicated plan recognition library is space consuming and redundant
as part of an integrated agent: An agent that plans and acts in an environment will need a separate
plan recognition library for recognizing the others’ actions, despite having implicit knowledge about
what plans in the environment look like.
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To address these challenges, we are inspired by mirroring processes in human brains. There has
been evidence that humans ability to do online goal recognition comes from the mirror neuron sys-
tem for matching the observation and execution of actions within the adult human brain (Rizzolatti,
Fadiga, Gallese, & Fogassi, 1996; Rizzolatti, 2005). The mirror neuron system gives humans the
ability to infer the intentions leading to an observed action using their own internal mechanism.

Analogously, we advocate goal mirroring, an online goal recognition approach which uses a
planner as a black box, to generate recognition hypotheses on the fly, eliminating the need for storing
plans in advance, in a plan recognition library. It is designed to efficiently handle incremental,
continuous observations and tightly integrates planning and recognition: Whatever plan can be
planned, can also be recognized.

We describe goal mirroring in detail, and report on extensive goal-recognition experiments in
two challenging continuous domains (3D navigation goal recognition and hand-drawn shape recog-
nition). In each, we compare the performance of goal mirroring to human subject recognition, and
draw lessons as to human recognition capabilities. In particular, while goal mirroring often per-
forms on-par with humans, or just below, it is more capable in recognizing non-optimal plans, and
less capable in recognizing plans based on little evidence. This hints that humans employ additional
sources of knowledge in their inference of goals. We additionally contribute a novel heuristic for
ranking recognition hypotheses, showing it is superior to earlier work. We contrast the recognition
results with those achievable with library-based methods and show that goal mirroring, utilizing no
plan library, can recognize plans just as successfully.

2. Related Work

Prevalent approaches to plan- and goal- recognition rely on a dedicated plan library as the basis
for the recognition process (see Sukthankar, Goldman, Geib, Pynadath, & Bui (2014) for a recent
survey). The plan library efficiently represents all known plans to achieve known goals; methods
vary in the representation and inference algorithms used. For instance, hidden Markov model vari-
ants (Blaylock & Allen, 2004). However, this comes at a cost: the requirement to store recognition
knowledge separately from plan execution knowledge wastes space and novel plans, even for known
goals, are difficult, if not impossible, to recognize.

There are exceptions. Cox & Kerkez (2006) present a library-base technique that attempts to
handle novel plans. However, the method uses a representation that is inappropriate for continuous
environments where actions and ensuing states are not discrete.

Some prior investigations have begun to explore alternative methods. Hong (2001) uses a spe-
cialized representation and online algorithm to generate possible goals without a plan library. Some
methods unify the plan-recognition and plan-execution libraries: Agent tracking (Tambe & Rosen-
bloom, 1995; Laird, 2001) uses an agent’s own BDI plan to recognize a BDI plan being executed by
another. Similarly, Sadeghipour & Kopp (2011) represent (and store) shape drawing plans, that can
be used both for recognition and execution by the agent. Most recently, Geib (2015) advocated the
use of combinatoric categorical grammars as a representation for both generating and recognizing
plans.

In contrast, the key to goal mirroring is the use an off-the-shelf planner—the same that would
be used by the agent to drive execution—for plan recognition; it does not store plans in any form. In
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this, it is related to work on offline plan recognition by planning (Ramirez & Geffner, 2010), which
works by assuming all observations are given at once to a planner-based recognizer. However, goal
mirroring differs from Ramirez & Geffner (2010) in several important ways. First, it is intended
for online recognition, where it is much more efficient, not having to re-calculate the initial paths
to the goal for each iteration (see Section 3.2). Second, goal mirroring is defined for continuous
and mixed continuous-discrete domains, while the previous method is defined for discrete domains
only (e.g., using PDDL-capable planners), where there is no uncertainty in the observations, and
observed actions are discretely defined. We therefore use a different ranking heuristic than earlier
work, which we show is significantly superior in continuous domains(Section 4.5).

We depart from previous work also in that we contribute in this paper a comparison of goal mir-
roring with human recognition capabilities, in two challenging, continuous domains: recognition of
shapes from incrementally drawn sketches, and recognition of navigation goals. These experiments
allow some insight as to human recognition biases and capabilities.

3. Goal Recognition

We begin by giving a clear definition of the goal recognition problem (Section 3.1) followed by
Section 3.2 with an in-depth portrayal of our mirroring algorithm.

3.1 Problem Definition

We define R, the goal recognition problem in continuous domains as a tuple R = (W, G, T, T,, O, M).
W C R"™ is the world in which the recognition problem is contained. This includes the familiar work
area in R" as defined in standard motion planning (LaValle, 2006). For robot poses on flat ground,
for instance, W is the space of possible positions and angle in each position (i.e., defined over R?).

It may also include additional dimensions, such as velocity, color (to capture drawings), etc.

Gisasetof k > 1 goals g1, ..., g; each goal g; C W represents a subset of the space, e.g., a
point location, a polygon drawn in some color, a trajectory, etc. 7" limits the duration interval [0, 7]
in which the observed agent was active, whether observed during this time or not.

The set of observations O is defined for a subset 7, C [0,7’]. T}, may include specific times in
which observations were made, or continuous intervals of time in which observations were made.
We define the set of observations O : T,, — 2" as a mapping such that for any observation time
t € Ty, there exists O(t) C W, i.e., each observation is of a specific subset of the work area, e.g., a
point, an edge, a trajectory segment which includes velocity, etc.

Given the problem R, the task is to choose a specific goal g € G that best matches the observa-
tions O. We formulate this intuition by including M, a set of plans, in the definition of R, where
at least one of the plans is assumed to account for the observations in O. Formally, a plan m?,
indexed by a goal g € G, with ¢ > 1, is a mapping mg :[0,T] — 2" from a time stamp ¢ € [0, T']
to a subset of the work area W, such that mg(1) = g. In other words, a plan is a procedure that
incrementally generates subsets of W, until the final subset at ¢ = 1 is one of the goals g € G.
Intuitively, we are describing a plan by its effects on the world. This general definition of a plan
avoids the question of the mechanisms by which effects are generated, and thus necessarily admits
different approaches to representing or generating the plan set M (as we discuss below).
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A matching between a speciﬁc plan m € M and the observations O is defined by the matching
error e(m, O) f D(O(t),m(t)) for a distance metric D, such that D > 0 for all t € T, (i.e.,

for all observatlons), and specifically D = 0 if O(t) = m(t). m is said to perfectly match the
observations if for any ¢ € T,,, m(t) = O(t), in which case e(m, O) is 0.

A solution to the goal recognition problem R minimizes e(mg, O); it is a member of the subset
Sk C G minimizing e(mg, O): Sgp = {s|argmin s e(ms, O)}.

In general, this condition (minimizing e(mg, O)) is necessary, but not sufficient. Any number
of potential plans, especially in continuous domains, may perfectly match the observations, but
differ in the unobserved parts. In general, a plan can perfectly match the observations, and then still
achieve any goal g. For instance, in navigation goal recognition, suppose we observe points leading
to a goal in the north. A path planner may generate a path that goes through all the observed points,
and then doubles back to the south. Such a path will perfectly match all observations, but add an
arbitrary suffix for any goal g.

This necessary—but insufficient—condition can be understood as a result of the abductive na-

ture of plan-recognition; reasoning to the best explanation out of a potentially infinite set of ex-
planations cannot be done without defining the necessary condition that allows to filter out non-
explanations. This is what the condition above does. A second—separate—condition must define
sufficiency; we discuss this in Section 3.2.
Online goal recognition. In this paper, we specifically address the online version of this problem,
where the set O is revealed incrementally. Specifically, we set ¢ = 0, and increment it until t = 7.
For every value of ¢, we may induce a goal recognition problem R(t) = (W, G,t,T¢, O, M?),
where T, O, M" are defined as the respective subsets of T,, O and M induced over the duration
[0, t]. We denote the solution of R(t) by Sr(t). The objective of the online goal recognition problem
is to minimize ¢ € [0, 7] such that Sg(t) = Skg.

In principle, it is possible to naively solve the online goal recognition problem by repeatedly
calling an offline goal recognizer with the problem R(t), as t increases and the latest new observa-
tion O%(t) is made available. However, this is quite inefficient, as the growing set O! is processed
anew with every call. Thus the challenge is to determine an efficient solution.

3.2 Online Goal Mirroring

Goal mirroring uses a planner to generate M dynamically in the recognition process, instead of
representing the plans explicitly, as a library of plans. The planner is used to dynamically generate
plans m € M as needed. This raises two key challenges.

First, the planner needs to maintain the necessity condition; it must generate a plan m, that
agrees with the observations, in order to minimize the matching error e(mgy, O) defined above. It
therefore needs to fold the observation history into m,. For STRIPS-like discrete planners, Ramirez
& Geffner (2010) have shown an elegant way to do this, by changing the domain theory used by
the planner. But in continuous spaces, e.g., by most motion planners, this cannot be done. We
therefore build a plan m, that includes the observations, by appending a prefix plan (composed of
the observations in time t) and a suffix plan (composed of a new generated plan, from the latest
observed state to the goal g). We denote the suffix plan m;.
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The second challenge is that the plan m, must also meet a sufficiency condition. To address
this, goal mirroring is biased towards rationality. It uses the planner to also generate mg, an ideal
plan that ignores all observations, and simply reaches g from the initial observed state, denoted
O(0). If the cost cost(mg)—where mg is made from the observations thus far and the suffix plan
m;,—greatly exceeds the cost(m,), we rank g lower (or eliminate it from Sg). The underlying
assumption here is that the ideal plan is optimal; if the observed plan is far from the ideal plan, then
the agent must not be rational, and is likely pursuing an alternative goal altogether.

Algorithm 1 integrates these insights for online goal mirroring. It accepts as input a recognition
problem R and a planner to be used as a black box. It then works as follows. First, in lines 1-2 we
call the planner to compute the plan 74 (initial state O(()) to each goal g, ignoring observations).
This avoids re-computation of 1m, with every loop iteration.

The loop in lines 3—7 is comprised of two steps. The first step (lines 4-6), centers on approxi-
mating the cost of plan m, (which folds the observations), from the cost of the prefix (maintained
by A), and the cost of a suffix plan mj,.

The second step then ranks the goal hypotheses. For each goal, line 7 assigns a score, which
is the ratio of the costs of m, and the approximated m,. As differences between them grow, the
ratio of the costs decreases, resulting in a lower score. In line 8, we transform these scores into
probabilities P(G|O) via the normalizing factorn =1/ score(g).

Algorithm 1 ONLINE GOAL MIRRORING (R, planner)
1: forall g € G do
mg < planner(W, g, O(())
: fort =0toT do
A + cost(OY)
for all g € G do
my, < planner(W, g, O*(t))
score(g) < cost(my) /(A + cost(my))
P(G|O(t)) < n - score(g)

® N R R

The choice to use this ratio in line 7 is not arbitrary. There exists evidence that human estimates
of intentionality in action are heavily biased towards motion that is efficient (or rational), i.e. pre-
ferring hypotheses that do not deviate from the optimal, rational plan. A cost ratio between this plan
(my if the planner is optimal) and the observed plan m, is known to agree with human judgement
of intentions (Bonchek-Dokow & Kaminka, 2014).

A different heuristic, though motivated by the same principle, is suggested by Ramirez &
Geffner (2010): they propose looking at the difference in costs, i.e., a score inversely proportional
to [cost(mg) — [A + cost(my)]|. We believe that a difference may be biased when dealing with
larger cost values, where small differences may still be very large and skew results. In Section 4 we
empirically contrast these two heuristics.

4. Experiments

We empirically evaluate goal mirroring in two challenging continuous domains, over multiple goal
recognition problems. Section 4.1 presents the domains and measures used in evaluation. Sec-
tion 4.2 reports on the main set of recognition results of goal mirroring, contrasting them with those
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of human subjects. Section 4.3 contrasts human and goal mirroring performance when the observed
plans are not optimal, directly touching on key assumptions in goal mirroring and other work. Fi-
nally, we contrast goal mirroring with a method based on a plan library (Section 4.4), and with
previous work on plan recognition by planning (Section 4.5).

4.1 Experiment setup

4.1.1 Two recognition domains

We evaluate the performance of goal mirroring in two vastly different, continuous domains; sketch
recognition and navigational goal recognition.

Recognizing sketches of regular polygons. Here the task is to recognize 2D hand-drawn regular
polygons. The use of sketches, drawn on paper, on a computer, or via hand gestures in the air, as
part of every day communications is continually increasing. By evaluating the recognition in this
domain we might be able to gather some information as to how humans perform this recognition
and what biases they encounter.

We had three people draw (by hand) equilateral triangles, squares, pentagons, hexagons, sep-
tagons, and octagons, for a total of 18 drawings. Shapes were drawn in various scales and rotations.
Naturally, hand drawings, even under ideal conditions, reflect quite a bit of inaccuracy.

Each of the 18 drawings was revealed one edge at a time, with the goal of correctly identifying
the goal shape, i.e., there are 18 online recognition problems. Observations, of the edges were gener-
ated by using machine vision to analyze the drawings. Specifically, we used OpenCV to implement
a Hough-transform edge detector (Duda & Hart, 1972) which we used to identify coordinates of the
initial and last points in the drawing, marking the limits of the initial and current observed edge. To
overcome scanning noise and drawing inaccuracy (which causes the Hough transform to generate
multiple candidate edges) hierarchical clustering (de Hoon, Imoto, Nolan, & Miyano, 2004) was
used to estimate the actual number of edges. See (Vered & Kaminka, 2015) for more details.

We developed a shape-drawing planner, which takes a partial drawing (as an initial state), and a
goal shape type, and attempts to complete the drawing to the goal shape (or report failure if cannot
be done, e.g., attempting to complete a 4-edge open polygon into a triangle). This is the planner we
utilize in the recognition process. To rank hypotheses (Algorithm 1, line 7), we looked at the ratio
between the ideal internal angle size for the goal shape, and the mean observed internal angle.

3D Navigation Recognition. In this domain the task is to identify the goal location of an object
observed moving in a 3D continuous world. The observations are made incrementally, as a sequence
of waypoints reached by the object as it moves. This domain, represents a common goal recognition
problem, applicable to a broad range of scenarios; be it in teamwork, where one participant needs
to anticipate the direction of the other or in adverserial scenarios where one agent tries to intercept
another. It is especially interesting to witness the comparison between human recognition and the
goal-mirroring recognizer in this domain due to the formidable spatial reasoning abilities of humans.

To carry out the experiments, we utilized the Open Motion Planning Library (OMPL; Sucan,
Moll, & Kavraki (2012)), in particular its cubicles 3D environment, the default robot, and the TRRT
planner that comes with OMPL. The cost measure (Algorithm 1, lines 4 and 7) is simply the length
of the path.
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We selected six points spread out over the environment as the goal set, G. The points are shown
in Figure 1(a). Four of the points were chosen arbitrarily over the larger visible surface of the cubi-
cles environment, the same surface where the observed object starts; these points were picked such
that they might be intuitive or easy goal positions for humans (points A-D). Two additional points
were specifically chosen to be harder, based on some pilot studies. One point requires humans to
think about the other side of the environment (a point on the “other floor” of the environment), point
F. The other point hangs in mid-air in the opening between the two “floors” of the environments,
point E.

To generate recognition problems, we generated paths from a fixed starting position to all six
goal points. Two paths were generated for each goal, for a total of 12 problems: one path generated
by the asymptotically-optimal RRT* algorithm implemented in OMPL (Sucan et al., 2012), and
another hand-modified to deviate from this optimal path by taking a longer route. The motivation
for generating such paths is to examine recognition performance with observations of non-optimal
plans, which test the rationality assumption of goal mirroring and previous works (see Section 4.3).

4.1.2 Evaluating recognition across domains

We evaluated goal mirroring in both domains, demonstrating the general applicability of the tech-
nique. However, to gain insight as to its strengths and weaknesses and to the general performance
of humans in the problem of goal recognition, we require recognition performance measures that
are neutral with respect to the domain and any specific problem. The performance measures must
allow comparison across a wide variety of observation sequence lengths, sizes of the goal set G,
indeed the specifics of any domain and recognition problems within it.

Measuring recognition results across domains and problems. We define three performance
measures below, using an example run to assist in the presentation. Let us examine the recognizer
output on a specific problem, here in the 3D navigation domain. Figure 1(b) shows the recognition
results for goal mirroring and one human participant in the navigation domain. The X-axis marks
the observations coming in incrementally. The Y axis measures the rank of the correct goal hy-
pothesis among all the goals ranked by the recognizer, thus lower is better (rank 1 indicates that the
correct goal was ranked as the top hypothesis). Naturally, this is post-hoc analysis; the recognizer
does not have access to the ground truth during the run.

After making two observations we can see that the correct goal was ranked 2 (out of 6) by the
goal mirroring recognizer and 4 by human participant. As more and more observations come in, it
is only natural that the recognition problem becomes easier, and indeed towards the middle of the
observation sequence, both instances converge to ranking the correct goal at the top of their ranking
(i.e., rank 1).

Such graphs can be drawn for any specific online recognition problem instance, to compare
the performance of different recognizers. Recognizers may vary in three measures: (1) the time
(measured by number of observations from the end) in which the recognizer converged to the correct
hypothesis (including O if it failed); (2) the area under the curve drawn in this graph, the false-
positive response (greater area means recognizer tended to rank the correct hypothesis lower, farther
from top); and (3) the number of times they ranked the correct hypothesis at the top (i.e., rank 1),
which indicates their general accuracy.
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For example in Figure 1(b), the goal mirroring recognizer converges at observation 6, whereas
the human participant converges earlier, at observation 5, i.e., was quicker to converge. Normalizing
for the observation sequence length along that specific path, to allow comparison across different
recognition problems, we measure the normalized convergence of the goal mirroring recognizer at
40%, and of the human participant at 50%. Higher results indicate earlier convergence, thus better.

Measuring the area-under-curve (AUC) gives us a measure of the uncertainty of the recognizer
during the recognition process. Here, a lower value is considered better indicating that the recog-
nizer was closer to the correct ranking along most of the process. For instance, in Figure 1(b) it is
clear that the AUC for the Goal-Mirroring recognizer is smaller than for the Human recognizer. We
can again normalize to allow comparison between different recognition problems, even normalizing
for the number of potential goals considered. We compute the ratio of the AUC to the worst-case
scenario, where a recognizer consistently ranked the correct hypothesis as the lowest rank (i.e., at
rank=|G|). A smaller percentage indicates fewer false positives considered by the recognizer. To be
consistent with the other measures (where a larger result is better), we consider the complimentary
normalized value (1-normalized AUC).

Finally, counting the amount of times the planner ranked the correct goal as the top hypothesis
(rank=1) gives us an overall measure of the reliability of the recognizer. The more frequently the
recognizer ranked the correct hypothesis at the top, the more reliable it is, hence a larger value
is better. We again normalize using the length of the observation sequence. In Figure 1(b), the
goal mirroring recognizer ranked the correct goal at the top 5 times, whereas the human participant
ranked it a total of 6 times. In this instance, the human participant is the better recognizer.

= Human
Goal Mirroring

) A

1 2 3 4 5 6 7 8 9 10

(a) 3D navigation domain: Cubicles environment, with goals (b) Recognition results of goal mirroring vs. a
and initial position of the object. Both surfaces (“floors™) human subject, for one problem with 10 observa-
shown. tions, in the 3D navigation domain.

Figure 1.

4.2 Goal mirroring and human recognition results

We conducted recognition experiments in the two domains, measuring performance of goal mir-
roring as well as human subjects using the three measures described. The exact same online goal
recognition problems were given to the human subjects as to the mirroring recognizer. In both do-
mains, humans had immediate access to the goal library; they were shown the possible goals at all
time, visually, so they did not have to rely on memory. After each observation was revealed, human
subjects were asked to provide a ranking for the goals, and to rule out any goals which they felt
were no longer possible.
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In the 3D navigation domain, we tested 19 human subjects (8 women; ages 17-51, mean 27.5).
Results for this domain are shown in Figure 2; the X-axis denotes the 12 paths, organized in pairs:
1-2 for goal point A, 3—4 for goal point B, etc. In the shape recognition domain, we tested 20 human
subjects (14 men; ages 19-52, mean 29). Results are shown in Figure 3; the X-axis denotes the 6
goal shapes. Both figures show the results for the three measures separately; light bars indicate goal

mirroring, dark bars represent the human mean results. Higher bars indicate better results.

1 1 1
HHuman ®Human
0.8 Goal Mirroring

Goal Mirroring Goal Mirroring
0.6 0.6 0.6
0.4 0.4 0.4
0 i (1] 0 | I
4 5 6 7 8 9 11 1

2 123 456 7 8 9101112 123 456 7 8 9101112

0.8 0.8 ®Human

N

(a) Convergence (b) AUC (c) RankedFirst

Figure 2. Recognition results in the 3D navigational domain. X-axis:12 paths, two to each goal. Y-axis:
Success ratio, higher is better.
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(a) Convergence (b) AUC (¢) RankedFirst

Figure 3. Recognition results in the shape recognition domain.

The figures show that in the shape recognition domain (Figure 3), goal mirroring generally per-
forms on par with human recognition performance—or close to it—in all three measures. However,
it us very different in recognizing triangles. In the 3D navigation domains (Figure 2), the results of
mirroring and humans are not as close. For instance, humans are better at the convergence measure
for goals A,C (paths 1-2, 5-6, resp.). They are worse for goals E,F (paths 9-10, 11-12, resp.).

We draw several lessons from these results. First, humans likely use additional knowledge (not
part of the recognition problem as defined), to make recognition decisions. This is evident when
we examine the greatly inferior recognition results of humans for goals E, F in the 3D navigation
domain. Humans repeatedly ignored these goal points in their ranking (despite being presented to
them throughout the experiment). We believe this hints at additional knowledge being used about
what constitutes a goal, coinciding with work on action parsing (Baird & Baldwin, 2001).

A related second lesson w.r.t using knowledge of goals is that humans do not just rule-out goals
too quickly, they also commit to them too early. In the shape recognition domain, the superior
recognition of humans in identifying triangles was achieved often after having seen only a single
edge. Somehow, humans successfully inferred that this single edge was part of a triangle, despite
the fact that at that point all shapes were equally possible. Analysis of errors—which we do not
present here for lack of space—shows that this early commitment came at a cost of making more
errors, ruling out the correct goal shapes early on.
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4.3 Optimality assumption

As discussed in Section 3, generating a candidate hypothesized plan that matches the observations
is only a necessary step in plan recognition. Multiple such hypotheses exist, and the key is to
determine a sufficient condition for selecting between them. In library-based methods, a plan can be
a solution if it can be found in the library of plans. But in planner-based methods, where candidates
are generated from scratch, dynamically, a different approach is needed.

Previous works (Ramirez & Geffner, 2010; Bonchek-Dokow & Kaminka, 2014) have proposed
to assume that the observed plan is carried out by a (bounded) rational agent, which means that
the observed plan should approximate the optimal plan for getting the initial state to the goal state.
Recognizers based on this assumption prefer hypothesized plans that better match the optimal plan.

To evaluate this, we purposely generated two different observed paths to each possible goal in
the 3D navigation domain, as described above. One path was the optimal. The other was modified
from it by introducing a detour which made it longer, though still smooth and executable by the
moving object. This detour purposely made the path to the goal pass near other goals on the way.
In this way we were able to evaluate how much both recognizers would deteriorate due to rational
spatial reasoning. By comparing the performance of goal mirroring and humans on each of these
two paths we hope to gain insight as to the importance of the rationality assumption in recognition.

Figure 4 presents the deterioration in both human and goal mirroring recognition when observ-
ing an optimal and a non-optimal plan (path) to the same goal, across the three criteria. The X-axis
in each figure shows the goal. The bars mark improvement or degradation: values that are larger
than zero indicate an improvement in performance when observing the non-optimal plan. Values
smaller than zero indicate degradation in recognition. Higher values are better: Larger positive
values indicate more improvement; smaller (closer to 0) negative values show less degradation.

0.2 0.15 ifrori
0.2 Human' . 0.15 Human o1 Human Goal Mirroring
0.1 Goal Mirroring 0.1 Goal Mirroring 0.05
0 0
o A B E B E ¥ °'°z o A B & B E K
A |B ¢ b E |[F 0.1
0.2 K
0.05 0.15
-0.3 -0.1 02
0.4 -0.15 .0.25
(a) Convergence (b) AUC (c) RankedFirst

Figure 4. Comparison of degradation from optimal to non optimal paths.

The figure shows that overall, mirroring deteriorates less, or improves more, than humans. This
happens across all goals except D, for the convergence measure (Figure 4(a)). It occurs for many
of the goals in AUC (Figure 4(b)), and for all goals but one (A) for the ranked-first measure (Fig-
ure 4(c)). The results are especially striking in the ranked first and AUC measure, where sometimes
mirroring results positively improve when observing non-optimal plans, while humans results de-
grade.

From the perspective of building automated recognizers, these are promising results, demon-
strating the robustness of goal mirroring. From a perspective of human cognitive modeling, these
results hint at a very strong reliance of humans on the rationality of the observed plan. As a result,
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goal mirroring as presented in this paper is still not a good enough model of human recognition
capabilities.

4.4 Mirroring vs. library-based methods

Goal mirroring has the principled advantage over library-based methods in terms of storage, and
in being able to handle any arbitrary initial observed state; no need to add possible plans to a plan
library and the only information saved between processing one observation and the next is the cost
of each path (see Section 3.2). However, this is also a disadvantage, in principle: goal mirroring
does not utilize prior knowledge even when it can be made available. To evaluate this aspect, we
contrasted mirroring with a hidden Markov model (HMM), a popular library-based technique, often
often used as a standard technique, e.g., (Blaylock & Allen, 2004).

Testing the HMM on plans unknown to it is a valid, but futile exercise, where the superiority of
goal mirroring would be obvious. We therefore evaluate HMMs vs goal mirroring when the plans
are known to the HMM. To do this, we first needed to discretize the navigation problem. we created
a robot-size cell grid in the 3D environment, each cell represented by a state in a hidden Markov
model. To generate goal recognition problems, we arbitrarily selected 11 points in the environment.
We generated observed paths from each point to all others, for a total of 110 goal recognition
problems. For each such problem, we trained (MATLAB HMM package) one HMM, using 20
paths generated by the RRT* planner as training data. In other words, we created a specialized
HMM, trained on 20 examples of asymptotically-optimal data, for each recognition problem.

Figure 5(a) contrasts the recognition results of HMMs and goal mirroring. Even without any
prior knowledge, goal mirroring is on-par with the HMM results, even better in the AUC measure.
Obviously, as more prior knowledge is available, this can change. Our conclusion is that goal
mirroring should be preferred when relatively less data is available, or when the number of possible
plans is very large (or infinite, as in these two domains).

1 mGoal Mi . 1 mGoal Mirroring
0.8 oal Mirroring 0.8 Plan Recoghnition By Planning
0.6 0.6
0.4 0.4
" . " l

0 0

Convergence RankedFirst Convergence RankedFirst
(a) Goal mirroring vs HMM (b) Goal mirroring vs Plan Recognition By Plan-
ning

Figure 5. Comparison to two different approaches.

4.5 The effects of the ranking heuristic

Finally, we empirically contrast the ranking heuristic we propose (ratio of costs), to that of (Ramirez
& Geffner, 2010) (difference of costs). Figure 5(b) shows the mean results when applying the
different heuristics on the 12 3D navigation problems. In all three measures, the ratio heuristic is
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clearly superior. We believe that this is because paths (to different goals) can substantially vary in
length. The difference heuristic compares absolute differences between paths of different lengths,
while the ratio heuristic compares relative differences.

5. Summary

We have presented online goal mirroring, a goal recognition approach for continuous domains that
does not rely on a plan library, but instead uses a planner to generate recognition hypotheses that
are continually matched against incremental observations. We demonstrated the generality of goal
mirroring by performing extensive experiments in two separate challenging domains. We have
shown the improved recognition performance of goal mirroring over earlier attempts. We further
contrasted the recognition performance of goal mirroring with humans showing that while goal mir-
roring often performs on-par with humans, or just below, it is more robust to observing non-optimal
plans. Finally, we demonstrated that, in essence, mirroring can recognize plans as successfully as
library-based methods (up to a limit).
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