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Abstract
This paper addresses the task of inductive process modeling, which involves constructing an expla-
nation of multivariate time series in terms of background knowledge. We review earlier research
on this problem, focusing on RPM, an induction system that is substantially more efficient and
robust than its predecessors. We also examine three of its limitations: overeager binding of process
instances, exhaustive search for component equations, and greedy search for consistent models. In
response, we present SPM, a successor system that instead binds process instances dynamically,
combines sampling with backward elimination to find complex equations, and uses constrained
depth-first search to identify sets of consistent models. After this, we report empirical studies that
demonstrate the benefits of these changes for model discovery in ecological and chemical domains.
We conclude by discussing related research, along with ways to address remaining limitations.

1. Introduction

Research on computational scientific discovery has an extended and distinguished history in artifi-
cial intelligence (Shrager & Langley, 1990; Džeroski & Todorovski, 2007). Although this paradigm
has features in common with work in data mining and machine learning, it differs in the aim of
constructing laws and models stated in established scientific formalisms. As a result, the field has
pursued separate problems, from the inference of quark models in particle physics to construction of
reaction pathways in chemistry. Initial research in this area emphasized equation discovery (Żytkow
& Langley, 1989), a topic important to many disciplines, but this task often arises early in a field’s
development, before scientists create models that explain observations in deeper terms. Explanatory
model construction has received less attention, but some progress has occurred.

Langley et al. (2002) introduced one important form of such tasks – inductive process modeling
– that uses background knowledge about processes that can occur in a domain to explain multivariate
time-series data. The aim is to find a specific dynamic model, including numeric parameters, that
reproduces the observed trajectories and predicts new values accurately. This model maps directly
into a set of differential equations, but it also explains observations in terms of known processes.
This distinguishes the paradigm from other problems that involve time series, including ones that
find differential equations with no explanatory overlay. The role of background knowledge and
explanation also make the task relevant to the cognitive systems community.

c© 2016 Cognitive Systems Foundation. All rights reserved.
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Figure 1. Observed and predicted derivatives for a predator-prey ecosystem comprising the protists Nasutum
and Aurelia. The former trajectory derives from data reported by Veilleux (1979).

In this paper, we review earlier research on inductive process modeling, focusing on the RPM
system, which is substantially more efficient and robust than its precursors. We also identify some
remaining limitations and describe SPM, a new system that builds on RPM but incorporates changes
to representation and search that address each of them in turn. Next we report experiments on eco-
logical and chemical domains that demonstrate SPM’s superiority over the its predecessor. In clos-
ing, we consider connections to other research and discuss promising directions for future efforts.
Our work builds directly on previous results, making it incremental, but the impacts on ability are
substantial, making them noteworthy in scientific terms.

2. Prior Work on Inductive Process Modeling

We can specify the abstract task of inductive process modeling in terms of inputs and outputs:

• Given: A set of typed variables and observed trajectories of their values over time;
• Given: A subset of these variables whose values should be explained;
• Given: Generic background knowledge about processes that might appear in the explanations;
• Find: A quantitative process model that explains variables’ trajectories and predicts future values.

The trajectories in Figure 1 and the process model in Table 1 should clarify these ideas. The fig-
ure shows measurements reported by Veilleux (1979) for a simple ecosystem in which the protist
Nasutum feeds on Aurelia that demonstrate a classic predator-prey cycle. The model in the table,
which includes three processes, reproduces these data with low error. Each process has a name, an
expression that determines its rate, one or more derivatives that are proportional to this rate, and
parameters that specify the sign and amount of this influence. Process rates are directly analogous
to the rates of chemical reactions, which can vary over time.

Multiple processes in a model can affect the same derivative term. If we assume that these
influences are additive, then we can compile any model into a set of ordinary linked differential
equations. In this case we obtain the result
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Table 1. A three-process model for an ecosystem involving the predator Nasutum (nas) and the prey Aurelia
(aur) that reproduces the two trajectories in Figure 1.

exponential_change[aur] exponential_change[nas]
rate r = aur rate r = nas
parameters A = 1.48 parameters B = −1.12
equations d[aur] = A · r equations d[nas] = B · r

holling_predation[nas, aur]
rate r = nas · aur
parameters C = 0.0047, D = −0.023
equations d[nas] = C · r, d[aur] = D · r

d[aur] = 1.48 · aur +−0.023 · aur · nas
d[nas] = − 1.12 · nas + 0.0047 · aur · nas .

However, the model moves beyond these equations to explain the observations in terms of the famil-
iar processes of organism growth, loss, and predation. This in turn requires background knowledge
about ones that may operate in the domain. This knowledge takes the form of generic processes
with a form similar to those in models, but that replace specific variables with typed abstractions
(e.g., nas with x [predator] and aur with y [prey] in holling_predation), rate formulae with algebraic
expressions (e.g., r = x · y), particular parameter values with ranges (e.g., C > 0 and D < 0), and
equations with functional forms (e.g., d[x] = C · r and d[y] = D · r).

Since its introduction (Langley et al. 2002), research on inductive process modeling has made
steady progress. The framework has produced positive results in ecology (Asgharbeygi et al. 2006),
biochemistry (Langley et al. 2006), and hydrology (Bridewell et al. 2008), and algorithmic exten-
sions have added the ability to handle missing values, combine models into interpretable ensembles,
and incorporate constraints to reduce search. However, most approaches to process model induc-
tion have been limited in three ways. First, although process models are inherently compositional,
early systems generated complete model structures using constrained exhaustive search, then car-
ried out gradient descent to fit each one’s parameters. Second, this parameter estimation relied on
repeated simulation to obtain model errors and thus revise parameters, sometimes taking hundreds
of iterations to reach local optima. Finally, even these expensive operations sometimes led to poor
parameter estimates that fit the trajectories inadequately.

In recent work, Langley and Arvay (2015) have reported RPM, a system that overcomes these
problems. They introduced the assumptions, used in our example, that every process has an associ-
ated rate on each time step, that they have one or more associated derivatives that are proportional
to its rate, and that these rates are determined by parameter-free algebraic expressions. Drawing on
these assumptions, RPM estimates the derivative for each variable on each time step using ‘center
differencing’, which averages a number of adjacent differences. The system also generates a set of
process instances by binding generic processes with variables in all possible ways consistent with
their type constraints. From the rate expressions associated with each one, it then calculates the rate
of each process instance on each time step.
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Using these derived values, RPM carries out greedy search through the space of process mod-
els. For each derivative term D in turn, it uses multiple linear regression to find an equation that
predicts D as a linear function of rate terms. The system first attempts this with the rates of single
processes as predictive variables. If any produces an equation with r2 above threshold, it uses this
relationship; if not, it considers all pairs of process rates, and so forth, continuing until it reaches a
maximum number of combinations. RPM requires later differential equations to include processes
that are consistent with those in earlier ones. For instance, if it includes holling-predation[nas, aur]
in the aur equation, it must also do so in nas regression and vice versa. This approach to inductive
process modeling combines the robustness and efficiency of multivariate regression with the use of
background knowledge to ensure consistent explanations.

Experimental studies of RPM’s behavior showed it was more reliable than SC-IPM (Bridewell
& Langley, 2010), an earlier system for process model induction, and that it was far more efficient,
running 83,000 times faster on even simple tasks. The program also dealt well with noise and
it scaled reasonably with increases in the number of model equations and the number of generic
processes. However, RPM’s developers noted that a number of drawbacks remained, which the
work reported in the next section aims to address.

3. An Extended Approach to Process Model Induction
In recent research, we have developed SPM, a system that incorporates many assumptions intro-
duced by its predecessor, RPM, but that also addresses some of the system’s remaining limitations.
Here we describe the primary differences between the two programs, both of which are implemented
in Common Lisp using subroutines for multivariate regression from the public domain.

3.1 Flexible Components of Process Models
One drawback of RPM was that it generated many process instances at initialization time. Not only
did this lead the system to generate more process instances than necessary at the outset, but it could
lead model induction astray through overeager binding of variables to processes. SPM addresses
this drawback by using a more flexible notation for generic processes and by instantiating initially
only with those variables mentioned in their rate expressions.

For example, in chemistry, RPM would require three distinct generic processes with two inputs,
x and y, one with a single output, another with two outputs, and another with three outputs. Each
might have rates that are equivalent to x · y. Given five chemical substances, say A, B, C, D, and
E, RPM would generate 49 process instances with seven possible pairs of inputs, some 21 with
one output, another 21 with two outputs, and seven with three outputs. Moreover, during model
construction, RPM might introduce an equation for C that incorporates one such process, say that
A and B react to form C and D, when in fact the correct model involves A and B react to form
C and E. The need to compose a process model from repeated choices of this sort makes it an
important issue, as it increases the branching factor in an exponential search task. Without the
ability to backtrack, RPM is likely to make overeager commitments to some process instances in
favor of others without evidence that they are preferable.

An even more serious problem is that the matrix manipulation routine RPM used for multiple
linear regression assumes that rows do not have identical entries. When this procedure encounters
two or more process instances with the same rates on each time step, it exits with an error. As a re-
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sult, RPM cannot find any models when some candidate processes have the same rates, which occurs
whenever those rates are determined by a subset of the variables in a generic process. This includes
a broad class of process modeling tasks, with ones that involve systems of chemical reactions being
an important subset that has practical relevance.

In the same setting, SPM would instead encode a single generic process with two inputs, x
and y, and with zero or more outputs. As a result, the system would generate only seven partially
instantiated process instances at initialization time. Moreover, it would decide to incorporate non-
rate variables only as justified by equations’ ability to fit the data. For instance, it might decide to
incorporate the process instance with A and B in its rate expression into the differential equation for
C and decide later whether to add other non-rate variables, like D or E, depending on whether their
changes appear to be influenced by the process’s rate. In addition to reducing the number of process
instances generated during search, this approach lets SPM delay commitment about including non-
rate variables until it finds empirical evidence, and it avoids the problem with replicated rates that
caused RPM serious issues. Thus, the new system should be able to find process models for a broad
class of settings, including ones for sets of chemical reactions, while its predecessor could not.

3.2 Heuristic Search for Component Equations

Another drawback of the RPM system was its reliance on exhaustive search for individual differen-
tial equations. The system kept this tractable by ordering search from simple to complex candidates
and placing a maximum on the number of processes considered. This was practical for domains that
involve many variables with only few interactions, but it could not induce models with more than a
few processes (rate expressions) in the right-hand side of each equation. Moreover, the number of
candidate equations grew very rapidly with irrelevant processes, making the problem worse.

The natural response is to replace this exhaustive search for equations with a heuristic method.
We need to identify a subset of processes that should appear in an equation, after which estimating
their coefficients using regression will be straightforward. This maps directly onto the task of feature
selection in supervised classification learning (Blum & Langley, 1997), which borrows from an
older literature in stepwise regression. Methods for ‘forward selection’ seem attractive, as they
search from simple to complex feature sets, but preliminary studies showed they will not work
with our rate terms, which can be highly correlated. For instance, if the correct equation is d[z] =
2xy + 3yz + 4xz, the r2 score for an equation that contains only one or two of these predictors is
no higher than for candidates with irrelevant terms instead. Only if all three predictors are present
is the score high enough to identify them as useful.

Fortunately, the converse does not hold. When given all relevant terms but also irrelevant ones,
multivariate linear regression produces an equation that is just as accurate as when given only rel-
evant variables. This suggests that we use ‘backward elimination’, another standard technique for
feature selection, that starts with all terms and removes one variable at a time until the r2 value drops
substantially. But this method is ineffective for large numbers of terms due to round-off errors when
the predictor variables are highly collinear,1 which is common in our domains and which causes
high variance in the regression estimates for coefficients. Backward elimination is usually reliable
for ten or fewer terms, but our problems involve many more candidate predictors.

1. A set of variables is collinear if one can predict some of them with high accuracy as a linear combination of others.
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In response, SPM combines backward elimination with repeated sampling. For each depen-
dent variable, the equation-finding module repeatedly selects a subset of k processes, with uniform
probability. Using the derivatives and process rates for each time step, it then invokes multivariate
regression to construct a linear equation that predicts the former in terms of the latter. If this equa-
tion’s r2 score is lower than a user-specified threshold, then SPM abandons it. Otherwise the system
ranks the processes by their coefficients’ absolute values and removes them in turn, smaller values
first, rerunning the regression algorithm in each case. This continues until either the r2 score falls
below threshold or the ratio between new and old r2 scores is less than a specified fraction. The
result is a differential equation with only those processes needed for high predictive accuracy. Like
its predecessor, SPM checks its coefficients to ensure they satisfy the numeric constraints associated
with each process. It retains the equation for future use in this case and abandons it otherwise.

Either way, SPM then selects another sample of rate terms, without replacement, and repeats
the procedure. This continues until the module has either found n distinct equations with r2 scores
above threshold or it has examined a user-specified number of samples without reaching the desired
number of acceptable equations. At this point, it returns those equations with adequate scores,
including the processes used as their predictive terms and the coefficients associated with each one.
The program repeats these steps separately for each dependent variable, removing any redundant
equations that it reaches from different starting samples. This strategy should let SPM scale, unlike
RPM, to domains like biochemistry, where a single metabolite can be influenced by many reactions.

3.3 Search for Consistent Process Models

As noted earlier, RPM carried out greedy search at the level of process models, with each candidate
model comprising a set of linked differential equations. The system constrained this search by
requiring that, if a process p that contains a derivative d[x] appears in an equation for some other
derivative, then that process p must also appear in the equation for d[x]. This ensured that processes
are used consistently across different equations, which is an essential aspect of process explanations.
However, RPM’s greedy search meant that, if it incorporated an incorrect equation early in model
induction, it could not overcome this decision later. Another drawback was that it found only one
process model, even if alternative accounts could explain observations equally well.

Other approaches would carry out depth-first search, by utilizing backtracking, or beam search,
by entertaining a number of partial models in parallel. Both could retain the ability to restrain later
equations by taking into account processes already included, but they would also require repeated
induction of the same equations during lower levels of the search tree, which would be inefficient.
A more promising method would find a set of differential equations separately for each dependent
variable, then attempt to combine elements of each set into one or more consistent process mod-
els. This scheme would not reduce equation-level search by constraining later equations to include
processes in earlier ones, but it would still check for such consistency at combination time.

SPM incorporates this latter approach, calling repeatedly on the equation-induction module
described earlier to find, for each of n dependent variables, a set of e or fewer alternative differential
equations. Next it selects one equation from each set in an effort to find all models that explain the
multivariate time series in a consistent manner. To this end, it carries out depth-first search, with
the first level considering equations for one dependent variable, the second for another one, and so

6



SELECTIVE INDUCTION OF PROCESS MODELS

on, to level n. However, search is not exhaustive because, like its predecessor, the system checks
each equation for consistency with earlier ones in terms of shared processes. In the worst case, it
may consider en different models, but it will typically reject many candidates at the second or lower
levels, reducing the effective branching factor substantially. In summary, a key difference from
RPM is that SPM finds multiple models that explain the data adequately, achieving this in a robust
manner by separating induction of equations from their combination into consistent models.

4. Experimental Evaluation

Although we designed SPM to overcome its predecessor’s drawbacks, whether it accomplishes this
aim is an empirical question. In this section, we review our claims about the new system and report
experiments that support them. First we show that SPM has broader coverage than RPM, in that
it can induce not only those process models the earlier system handled but others as well. Next
we compare the two programs’ methods for finding individual equations, demonstrating that SPM
scales better than its predecessor. Finally, we examine their relative abilities for inducing complete
models that incorporate processes consistently. Because our purpose is to show that SPM’s exten-
sions are beneficial, only comparisons to RPM are appropriate; reporting results to other systems
for inductive process modeling (e.g., Bridewell & Langley, 2010) would offer no scientific insights.

4.1 Basic Capabilities of the System

One difference between RPM and SPM is that the former instantiates process instances fully at
initialization time, whereas the latter delays binding of variables that do not appear in the rate
expression. Eager commitment can keep RPM from inducing models in domains like chemistry,
where it generates multiple processes with the same rate. Instead, SPM waits until it finds evidence
that a variable not yet included in a process instance benefits from appearing in its differential
equation, then binds it at that point. This suggests a testable hypothesis about the systems’ abilities:

• SPM induces a superset of the models found by RPM that adequately explain the observations.

To evaluate this claim, we first ran both systems on five different ecological time series. These
included the natural data on protist interactions described earlier, noise-free synthetic data2 for two
predator-prey settings that involved six interacting organisms, and synthetic observations for an
aquatic ecosystem involving zooplakton, phytoplankton, two nutrients, and detritus. For the natural
data set, RPM and SPM found the same process model, with r2 = 0.84 for the d[Aurelia] equation
and r2 = 0.71 for d[Nasutum]. For the synthetic domains, both systems successfully found the
target model used to generate the data, although in some cases SPM also found models with similar
r2 scores, as we discuss later.

We also demonstrated that, like RPM, the new system can reconstruct a 20-variable predator-
prey model from the multivariate trajectories shown in Figure 2. For this task, we had SPM consider
differential equations with ten or fewer rate terms, find one such equation for each variable, and

2. We have used synthetic data for most of our studies, both because time series for our scientific domains are difficult
to obtain and because they give control over features of the task. Langley and Arvay (2015) reported that smoothing
the time series lets RPM handle up to ten percent noise, so we did not focus on that issue in our experiments.
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Figure 2. Observed trajectories for a 20-variable predator-prey system in which the organisms are organized
in a linear food chain. Both RPM and SPM reconstruct the target process model that generated these data.

sample no more than 1,000 subsets of rate expressions. Over 50 runs, the system reliably found a
single consistent model, which corresponded to the target, in 1.35 ± 1.28 CPU seconds, as compared
to 0.38 ± .018 seconds for its predecessor. SPM also reliably reconstructed a six-variable predator-
prey model when given not only two relevant generic processes, but 16 irrelevant ones with other
rate expressions that produce 324 distinct process instances. Here the system required 4,000 samples
to find each equation and took 2.7 ± 1.2 seconds on average compared to RPM’s 9.1 ± 0.2 seconds.

In addition, we ran both systems on a number of synthetic chemical data sets. Table 2 shows one
system involving six interacting chemicals connected via eight reactions (processes). One process
involved a time-varying influx variable Z that keeps other variables from reaching a steady state.
In another chemical data set, seven chemicals participated in 12 reactions, including a time-varying
influx. SPM encountered no difficulty inducing either reaction network from multivariate trjectories
with at least 80 time steps. In the first case, the system generated 22 process instances from three
generic processes, then took 1,000 samples of six rate terms to identify each component equation.
In the second case, it generated 46 processes from four generic processes, then took 15,000 samples
of ten rate terms. Runs on the first data set required 14.7 ± 0.21 CPU seconds on average, whereas
those for the second took a mean of 111.8 ± 0.6 seconds. In contrast, RPM generated 63 process in-
stances from analogous generic structures and could not induce either target model. As anticipated,
its greedy algorithm interacted with its eager binding of variables in processes, leading to inclusion
of incorrect process instances it could not retract during later stages of model construction. These
runs demonstrate that SPM can induce chemical process models that its predecessor cannot handle.

In summary, the new system improves on RPM by delaying the binding of variables that do not
appear in rate expressions of generic processes. This lets SPM avoid the problem of replicated rates
that keeps its predecessor from finding a broad class of quantitative process models, including sys-
tems of linked chemical reactions. The new approach also reduces the number of process instances
generated during induction, but this efficiency gain is less important than the increased coverage of
discoverable process models.
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Table 2. Differential equations for a chemical system with six variables that interact through eight distinct re-
actions. SPM can reconstruct this model, with minor parameter differences, from time series that it generates
whereas RPM cannot.

dX1/dt = 1.1 ·X2 ·X3− 1.6 ·X1

dX2/dt = 1.8 ·X1− 1.5 ·X2− 1.0 ·X2 ·X3 + 0.9 ·X5 ·X6

dX3/dt = 1.9 ·X1 + 1.1 ·X2− 1.3 ·X3− 1.3 ·X2 ·X3

dX4/dt = 0.9 ·X2 + 0.8 ·X3− 2.5 ·X4 ·X5 + 0.5 ·X5 ·X6

dX5/dt = 0.9 ·X3− 1.8 ·X4 ·X5 + 0.9 · Z
dX6/dt = 2.3 ·X4 ·X5− 0.8 ·X5 ·X6− 0.5 ·X6

4.2 Scalable Induction of Differential Equations

As noted earlier, SPM’s approach to finding individual differential equations differs substantially
from that of its predecessor. RPM carries out exhaustive search for the simplest equation with an
acceptable r2 score, starting with one-term candidates and adding terms until reaching a maximum
number. The new system combines sampling of rate terms (processes) with backward elimination
to identify subsets that are good predictors of derivatives. This suggests a second hypothesis:

• As the number of terms in a target equation increases, their induction time for SPM grows more
slowly than for RPM.

To test this prediction, we examined the behavior of their modules for equation induction in isola-
tion. We generated synthetic data in which derivatives were a linear function of different numbers –
from one to ten – of processes with random valued rates. The random data ensured that the terms in
each equation were not highly correlated, thus containing redundant information. We ran each sys-
tem ten times on each equation and measured the CPU time needed to find it. We fixed the number
of samples at 10,000 and the number of sampled rate terms at 13 for all SPM runs.

Figure 3 presents the results of this experiment. RPM actually finds simpler equations slightly
more rapidly than SPM, as they are consistent with its simplicity bias and it avoids the cost of
repeated sampling. However, this changes for equations with five processes, at which point SPM
becomes faster. In fact, there were so many combinations of nine-term equations that RPM could
not finish generating them, making the system unable to complete its runs. Growth in CPU time
for SPM was approximately linear, as it depended on the number of samples and the number of
processes in each sample, as specified by the user.

Analysis reveals that SPM’s sampling approach does not guarantee it will find the appropriate
equation. For this to happen, the correct set of rates must appear in the sampled set and feature
selection must correctly identify them as relevant. We can calculate the probability that the correct
combination of rates will appear in a sample as

(T
S

)(T−S
S−R

)
/
(T
R

)
, where T is the total number of

processes, R is the number of rates that appear in the target equation, and S is the size of the
sample. Additional sampling increases the odds of finding an equation but increases CPU time
further, which is a natural tradeoff. Nevertheless, it seems clear the new system scales better to
equation complexity than its precursor.
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Figure 3. Average time for RPM and SPM to find target equations, in CPU seconds, with different numbers
of rate terms (processes). The SPM curve is actually linear, but the slope is so low that it appears constant.

4.3 Improved Induction of Consistent Models

Another difference between our approach to process model induction and its precursor lies in their
search for consistent models. Rather than relying on a greedy method aided by process constraints,
SPM first finds alternative equations for each dependent variable and then uses depth-first search to
find all ways to combine them into models. This suggests a final hypothesis about the two systems:

• SPM induces a more complete set of consistent process models than RPM and has greater
chances of recovering the target model.

This claim seems straightforward to test, but we have already seen that RPM’s greedy search is
sufficient to find complex ecological models, and its inability to induce chemical reaction networks
is due mainly to eager binding of variables in processes. However, we can modify SPM’s parameters
to approximate greedy search through the space of process models.

Thus, we ran a parametric study in which we compared the behavior of the multi-equation SPM
with a variant that finds only one differential equation for each dependent variable. We ran both
versions on the same synthetic data sets used earlier, some generated from predator-prey models
and others from chemical reaction networks. For each condition, we ran the systems 20 times and
recorded both the total number of consistent models induced, as well as the percentage of times they
found the target model. Table 2 shows that, on the five ecosystem data sets, each variant reliably
found a single model that was equivalent to the target. In contrast, on the two chemical data sets,
the ‘greedy’ version was unable to find the correct model, whereas the full SPM generated several
consistent models, in each case finding the target. Naturally, the full variant took longer to run (14.7
and 111.8 CPU seconds, respectively) than the greedy version (1.17 and 1.65 CPU seconds), but
there is a natural tradeoff between time and coverage. The chemistry B data set was particularly
challenging and needed more time to find consistent models reliably. We should emphasize that all
additional models SPM found were internally consistent in terms of processes and had comparable
r2 scores. One cannot distinguish them given the data and the system’s background knowledge.

10



SELECTIVE INDUCTION OF PROCESS MODELS

Table 3. The probability of finding a target model by greedy and multi-equation variants of SPM on ecological
and chemical data sets, along with average CPU time.

Greedy SPM Multi-Equation SPM

Percent CPU Percent CPU

Nas-Aur 100 0.004±.002 100 0.004±.001
Aquatic Ecosyst 100 0.03±.012 100 0.12±.007
Predator Prey 6a 100 0.01±.003 100 0.03±.004
Predator Prey 6b 100 0.83±.004 100 2.63±.008
Predator Prey 20 100 0.81±.028 100 4.10±.100

Chemistry A 0 1.17±2.03 100 14.7±.210
Chemistry B 0 1.65±1.27 100 111.8±.610

To summarize, SPM’s incorporation of depth-first search lets it find multiple explanations that
are consistent with the data, as opposed to RPM’s more limited capacity to return a single process
model. The latter’s inability to induce some classes of models ruled out a direct experimental
comparison of the two systems, but studies with a greedy version of SPM revealed that devoting
additional effort not only lets it uncover multiple accounts that fit the observations equally well,
which is desirable in its own right, but also increases greatly the chances of inferring the underlying
model that generated the multivariate time series.

5. Related Research

We have already explained how SPM builds on a long tradition of research on inductive process
modeling. Our system addresses the same basic discovery task as other work in this paradigm, al-
though it takes advantage of ideas introduced by Langley and Arvay (2015) to make the problem
more tractable. We have retained RPM’s assumptions that each process has an associated rate that
is determined by an algebraic expression and derivatives that are proportional to this rate. This idea
comes originally from Forbus’s (1984) Qualitative Process Theory, which used a similar notation for
qualitative models of physical systems. SPM introduces improved mechanisms for inducing quan-
titatve process models, but it benefits from many earlier ideas. The use of background knowledge in
inductive logic programming is similar in spirit but very different in practice, as it acquires models
from relational rather than numeric data and it typically relies on separate-and-conquer methods that
are inappropriate for linked sets of differential equations, which produce strong interactions among
the shared variables.

We should also discuss other work on inducing differential equation models that falls outside the
process modeling paradigm. A number of efforts have drawn on other forms of background content
to constrain search through the space of model structures. Bradley et al. (2001) report an approach
that uses knowledge about the qualitative behavior of different forms of equations to limit the space
of functions considered. For example, their system uses knowledge about types of trajectories that
linear differential equations can produce to reject this class when it observes different behavior.
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Evaluating candidates through parameter estimation occurs as a last resort, as it requires far more
computation than qualitative reasoning. We should explore using similar techniques in SPM to
reduce the number of functional forms that it entertains.

Džeroski and Todorovski (2008) adopt another approach that uses a context-free grammar to
specify the space of functional forms examined during equation induction. The grammar includes
rules that restrict the forms of algebraic expressions that can appear on the right sides of differential
equations. Their system can also take into account structures that are partially known. Both forms
of background knowledge reduce the size of the search space greatly. Arvay and Langley (in press)
show how another relative of RPM can adapt process models induced in one setting to new data sets,
but it could benefit from additional constraints on how to combine processes. The main drawback of
their approach is that, without a notion of process, it remains unclear how to explain why particular
elements appear in an equation, but we could borrow SC-IPM’s use of constraints to guide inductive
process modeling (Bridewell & Langley, 2010).

Finally, Srividhya et al. (2007) describe a technique that uses knowledge about molecular struc-
tures to constrain search for biochemical pathways. Their system generates a complete set of possi-
ble reactions that are consistent with chemical laws and creates candidates from these components.
One variant starts from an empty model and adds one reaction at a time; another version starts from
all reactions and discards them one after another. The authors draw on ideas from graph theory to
quantify model complexity, which their system uses to determine its halting criterion. SPM already
encodes domain constraints in its library of generic processes, but adding a complexity metric based
on model connectivity could let it select better candidates. Srividhya et al.’s approach appears to
work well for chemical systems, but some elements may not apply to other domains.

A different line of work instead utilizes extensive search, typically some variety of evolution-
ary algorithm, to find differential equation models that fit time series. Examples of this approach
include Koza et al. (2001), Schmidt and Lipson (2009), and, most recently, Lobo and Levin (2015).
These techniques are adept at inducing models that match observed trajectories, but do not lend
themselves to using background knowledge during search. This means they can obtain results that
humans find difficult to interpret, making them quite different in spirit from methods for inductive
process modeling. We have not compared these systems to SPM empirically because they focus
on a different class of problems and search a substantially larger space, which makes them incom-
parable. However, evolutionary search methods might be more effective at selecting rate terms for
equations than our current use of random sampling.

6. Directions for Future Work

We have shown that SPM provides greater coverage, efficiency, and reliability than RPM, but there
remain several areas where we can still improve the system. One drawback of the current imple-
mentation concerns its reliance on user-specified parameters. These include the maximum r2 value
needed to accept an equation, the number of processes to sample from those available, the number
of equations to find for each derivative, and the number of samples taken when searching for them.
SPM shares the first parameter with its predecessor, but we introduced the others when adding its
new techniques. The system’s behavior can be sensitive to these settings when variables are highly
collinear, and we should explore ways to mitigate this dependence.

12
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SPM system also shares two important assumptions with RPM. One is that the rates of processes
are determined by parameter-free algebraic expressions. This assumption is violated in chemical
models that include the Michaelis-Menten equation and in some ecological accounts. Future ver-
sions should estimate such parameters at the same time as they fit the coefficient for each process.
Nonlinear least squares estimation offers one promising approach, but it requires an initial parameter
value, upper and lower bounds, and stopping criteria; the technique also requires more computation
and it can halt at local optima. SPM’s current method treats equations separately, so that its param-
eter space includes only those terms that appear in a given equation, not elsewhere in the model.
Moreover, once it finds a parameter for one equation, it reuses its value in later equations that in-
clude it, reducing dimensionality further. Our initial efforts with gradient descent approaches have
been promising, but the results are too preliminary to discuss here.

The second shared assumption is that all variables are observed. This lets both systems trans-
form parameter estimation for a set of linked differential equations into separate regression tasks,
which is far more tractable. SPM cannot find equations for observed variables if any of the rate ex-
pressions include an unobserved variable, as it cannot calculate the latter’s rates, which are needed
during the regression procedure. However, the system can return a partial model that includes equa-
tions influenced only by observed variables. This offers a way to constrain the values of unobserved
variables if they are influenced by multiple processes. The latter must still follow the relations spec-
ified in the generic process library, so a given rate equation may contain one unobserved variable,
with the rest being observed. These serve as constraints on the unknown values that, again, we can
use gradient descent techniques to estimate. Our initial studies with this approach have been en-
couraging, but it applies only to certain model configurations that involve observed and unobserved
variables, and our results are not mature enough to report here.

A related challenge involves SPM’s reliance on a library of generic processes that contain the
elements needed to construct an adequate model. If some processes are missing, then the system
can only induce a partial model for which some equations are incomplete. However, even such a
partial model can serve as the starting point in a search for entirely new processes. Consider the
simplest case, in which a target equation lacks only one unknown process. An extended SPM could
then generate candidate rate expressions as algebraic combinations of observed variables, determine
which of these improves the r2 score sufficiently, and retain them as the core of new processes. If
some of these rate terms also improve the fit for other equations, this offers further evidence they
describe the missing process. One could apply the same idea to situations in which two or more
unknown processes contribute to an equation, but this would require far more search.

A final area of investigation would expand the framework to handle qualitative process models
and simulation. SPM’s processes offer a qualitative overlay that provides context on differential
equations, but not all scientific models or data are numeric. Qualitative models arise in fields that
involve imprecise phenomena, like biology, where experiments produce results noisy enough that
scientists trust only their direction, not their degree. We can replace SPM’s algebraic expressions
with qualitative influences to produce a variant on Forbus’ (1984) framework. Given a model with
such qualitative processes, we can use his techniques to generate qualitative trajectories, or envi-
sionments, for each variable, which we can in turn compare to observations. The problem is that
envisionments are often nondeterministic, in that they describe multiple possible trajectories. One
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response is to use semi-qualitative models that retain parameter-free functional expressions for pro-
cess rates, but omit parameters for the linear relations between derivatives and rates. Instead, such
a model would include, for each derivative term dX/dt, an algebraic constraint that predicts when
the derivative is positive or negative. If, for each such term, we label the combination of observed
values on each time step as associated with positive or negative derivatives, we can use supervised
learning methods to find algebraic bounds that predict the direction of change on future time steps.

7. Concluding Remarks
In this paper, we reviewed earlier work on the task of inductive process modeling, focusing on the
RPM system and its limitations. We also described SPM, a new system that shares its predecessor’s
basic framework but that introduces three innovations. These include (1) delayed binding for vari-
ables that do not appear in processes’ rate expressions until evidence suggests they would benefit,
(2) combination of backward elimination with sampling to induce more complex equations, and (3)
constrained depth-first search to identify process models with consistent equations. We reported
experiments that demonstrated these novel elements let SPM find chemical process models that
RPM cannot handle, induce complex equations in a more scalable manner, and discover multiple
consistent models when they are available, rather than being limited to only one explanation.

We also discussed related research on induction of differential equation models. Most other
work on this topic does not adopt a process framework, making their results less explanatory than
descriptive, but we reviewed a number of earlier systems that used background knowledge to guide
heuristic search through the space of models. Finally, we proposed a number of directions in
which to augment our framework for inductive process modeling – reducing SPM’s reliance on
user-specified parameters, handling processes with parameters in their rate expressions, inferring
the values of unobserved variables, inventing entirely new processes, and inferring qualitative ac-
counts. Taken together, these extensions should improve considerably the range and reliability of
computational methods for discovering explanatory process models.
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