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Abstract
We describe work toward learning semantic frames from definitions in WordNet. Our ultimate pur-
pose is to build a resource of common sense knowledge with at least the depth of FrameNet but with
wider coverage. The approach uses the TRIPS parser to identify relationships between concepts
which we evaluate with human judges. From those relations we generate a very small domain of
frames with encouraging results. We discuss how the relationships can be further exploited in the
future and identify obstacles and possible solutions.

1. Introduction

It is well recognized that effective cognitive systems must contain significant amounts of common-
sense knowledge, and that it does not seem possible to encode such knowledge by hand. Rather,
systems will have to learn such knowledge. One of the most promising approaches is to learn from
reading, given the vast amount of textual information available. Here we report on work toward au-
tomatically deriving semantic frames, along the lines of those encoded in FrameNet (Johnson et al.,
2003).

Resources like FrameNet provide knowledge about typical situations (frames), their potential
participants (elements), and the words that evoke them (lexical units). Frame semantics can provide
high-level knowledge to facilitate high-level cognition that requires an understanding of not just lan-
guage but also situations in general. Furthermore, the symbolic nature of a frame allows researchers
to better verify what a frame-based system knows and to understand entailments derived from it.

In practice, researchers mostly use FrameNet for not just shallow tasks like semantic parsing
(Shi & Mihalcea, 2005) but also deeper ones like textual entailment (Burchardt et al., 2009). The
caveat is that in databases like FrameNet, the entries must be created by expert users which has
lead to a widely recognized coverage problem in its lexical units (Baker, 2012). There is also
a coverage problem for less general frames. For example, FrameNet does not have a frame for
any specific sports situations, like "strike" or "penalty kick"; instead there is a highly underspec-
ified frame, Sports_Jargon, with only three lexical units (LU’s), serve.n, strike(baseball).n, and
strike(bowling).n. Previous attempts to create a lexical database of semantic frames with more
coverage either ignore the deep knowledge aspects of frames or only focus on combining existing
hand-built resources and do not address the problem of frame coverage.
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In this paper we propose a novel approach that not only learns frames and the words that evoke
them - with comparatively greater coverage than FrameNet - but also discovers semantic knowledge
about how the evokers relate to their frames and how frames relate to each other. We have a sec-
ondary objective which is to classify those relations into abstract frame elements and inter-frame
relations like those found in FrameNet. In the next section (2 Related Work) we will explore gen-
eralizations of previous work; afterwards, we will lay out our proposed approach (3 System) and
present and discuss results (4 Experiments). Finally, we will briefly discuss future work and then
conclude (5 Future Work and 6 Conclusion).

2. Related Work

Previous work related to our goal can be grouped into two categories based on both method and input
source. The more trodden approach, variations of which appear in (Materna, 2012) and (O’Connor,
2012) uses statistical methods on large annotated corpora to learn the words associated with each
verb - e.g. the frequency that the word, "man", occurs as the subject of the verb, "eat". Verbs are
then clustered based on what words they co-occur with and each cluster forms a frame-like structure
and the co-occurring words become that frame’s evokers.

Statistical methods are very flexible in that they can use any number of large corpora as input
which ensures their lexical unit coverage will be better than FrameNet’s. They can also potentially
employ hierarchical clustering that would allow hierarchical frames and very specific frames unlike
FrameNet in certain cases like Sports_Jargon. Of course, these methods all come with a caveat: the
corpora must contain sufficient information regarding a domain in order to learn anything about it.
This is not a problem when the domain is often written about, like soccer, where the very specific
concepts necessary to understanding the domain (passing, scoring, blocking, etc) are used repeat-
edly; however, by definition, obscure terms are unlikely to be learned. The depth of knowledge
generated is an additional issue with existing statistical methodologies. FrameNet has a very spe-
cific and frame-dependent role set but (Materna, 2012) and (O’Connor, 2012) are only considering
shallow grammatical relations like subject and object. The exclusion of a deep concept ontology
and role hierarchy does not mean that statistical methods are inherently not capable of generating
deeper knowledge but it will make the available data sparser as the general roles and concept are
divided into more specific ones, e.g. the object role will be divided into theme, patient, etc.

The other type of method considered uses a more symbolic approach over hand built knowl-
edge bases (KBs) like FrameNet, WordNet (Miller, 1995), and VerbNet. These methods attempt to
combine the semantic richness of FrameNet with the coverage of machine readable dictionaries like
WordNet by finding mappings between them. (Shi & Mihalcea, 2005) uses the mappings VerbNet
provides to both WordNet senses and FrameNet frames to infer mappings directly from WordNet
senses to frames. Furthermore, (Shi & Mihalcea, 2005) and (Laparra & Rigau, 2009) use shallow
similarity measures (e.g. word overlap) on WordNet senses and LU glosses to directly map between
the two. With the mappings in place, a frame’s LU coverage can be expanded by incorporating their
corresponding WordNet senses, synsets, and their hypernyms.

Learning from KBs has the advantage of incorporating deeper semantic knowledge - like Word-
Net’s cause relations or FrameNet’s preceded-by relations - that shallow statistical methods do not.
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This comes at the cost of limited frame coverage - i.e. these methods only augment existing frames
and semantic relations with another KB’s knowledge and will not learn anything beyond what has
been hand annotated. Compare this to a statistical method which can potentially learn a large breadth
of, albeit shallow, knowledge.

3. System

Our goal is to learn new frames of a greater specificity like the statistical methods above but with an
eye toward deeper semantic knowledge. Our approach works by using the deep representations of
the content of word definitions from dictionaries described in (Allen et al., 2013) to derive frames
and the concepts that evoke them. One of the benefits of using a dictionary is that they aim for
wide coverage, so obscure word senses are likely to be encountered. We are using the definitions
present in WordNet which has the added benefit that the frame evokers are also WordNet senses
which provide a much deeper representation and potential for linking to other KB’s. However, our
process is not specific to WordNet and could potentially be used on any dictionary resource. The
approach treats each WordNet sense as a potential frame (for this paper we are only concentrating
on verbs) and searches for the other senses that use it in their own glosses - i.e. given a sense(frame),
the system tries to find all of the senses(evokers) that evoke it.

We begin by producing an OWL 2 KB (the description logic subset of the web ontology lan-
guage) from WordNet glosses using the TRIPS semantic parser as described in (Allen et al., 2013).
In short, the parser produces a logical form (LF) from each gloss that represents a graph of nodes,
their types (often WordNet senses but sometimes just types from TRIPS’ upper ontology), and the
semantic relations between them. For each sense we create an OWL2 class and then assert that it
is a subclass of its gloss’ LF. The LF’s are converted to OWL2 in a fairly direct way, each node is
translated into a new class which is subsumed by its type. Edges in the LF become existentially
quantified property restrictions (although the choice of quantifier does not play a significant role for
this paper’s purpose). We also assert that every sense in a synset is equivalent. Notice that we do
not use WordNet’s hypernym hierarchy and all subsumption relations come from the glosses - this
helps make the approach portable to non-hierarchical dictionary resources.

Figure 1 shows an LF graph for the gloss of pesticide%1:27:00, "a chemical used to kill pests".
Each node lists its unique identifier and then its type’s unique identifier. The source of the graph,
"DEFINITION" points to the node that will become pesticide%1:27:00’s subsumer. Reading the
graph, we see that the defined concept is a chemical%1:27:00 such that it is applied (apply%2:34:00)
for the purpose of killing (kill%2:35:00) pests (pest%1:05:00). From this LF we generate the fol-
lowing OWL2 axioms: pesticide%1:27:00 v N1; N1 v chemical%1:27:00 u ∃theme−.N2;

Figure 1. LF for, "a chemical used to kill pests"
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Figure 2. Subgraph of kill%2:35:00’s evokers and the entailed semantic relations between them. Solid lines
denote entailment and broken lines denote a quantified restriction. The graph shows simple relations like
shoot%2:41:00 entailing kill%2:35:00 and an eliminator%1:17:00 being the agent of kill%2:35:00. It also
shows more complex relations like pesticides%1:27:00 being a type of chemical(N1) that is used(N2) to(N3)
kill(kill%2:35:00) and that outdraw%2:33:00 means to "best(X1) someone in(X2) a gunfight%1:04:00(X4)"
and a gunfight%1:04:00 "involves(X4) guns (X5) associated with killing (kill%2:35:00)".

N2 v apply%2:34:00u ∃of−.N3; N3 v ont:purposeu val.N4; N4 v kill%2:35:00u theme.N5;
N5 v pest%1:05:00.

We then run an OWL reasoner over the generated OWL2 KB and use the inferences to build a
graph where OWL2 classes are nodes and subsumption and object restrictions are the edges. When
generating a frame from a seed sense, we consider any sense that can reach it strictly through for-
ward links to evoke that frame and add them to the frame’s evoker set. Although we use the expres-
sively constrained OWL2 for inference, the frames that we generate can be used in less constrained
logics and are not inherently tied to OWL2’s semantics. A small subgraph of what was generated
for kill%2:35:00 is shown in Figure 2. At this point, we have generated frames and associated them
with evokers, now we will turn our attention to frame elements. This is where the knowledge gen-
erated in (Allen et al., 2013) begins to differentiate our approach from shallower methods. Frame
elements represent general types of participants that are typically involved in a frame as well as
the role they play in that frame. Our frame elements describe what is necessary and sufficient for
something to be classified as that element - this includes information about semantic type and the
thematic relation that element has to the frame.

Observe that the paths between a frame and its evokers show how they evoke the frame. But
most of these paths do not represent typical participants; there are a few cases like eliminator-
%1:17:00 ("an agent that eliminates(kill%2:35:00) something") but they are comparatively rare.
Instead, the evokers are better thought of as examples of one of the frame’s elements. We propose
using these examples to automatically derive frame elements and their semantic types. There are
several possible ways to abstract and learn from such examples and one avenue we are exploring
appears at the end of the next section.
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4. Experiments

In this section we will present two different experiments, one evaluates the generation of evokers
and also tests how well the thematic roles linking frame and evoker indicate their highlevel role in
the frame. The second experiment was our first attempt at using those relations to learn a frame’s
elements.

4.1 Evaluating Evokers

First, we wanted to see if the evokers that the system generated were reasonable to a human. Many
other systems, like those presented in section 2 , evaluate their results by comparing their generated
evokers to the set of LU’s in one of FrameNet’s frames; but we feel FrameNet is inadequate for our
purposes. As stated in the introduction, FrameNet has a coverage issue, so to use it as a standard
will not provide a complete evaluation of our results. Although our goal is not to recreate FrameNet,
we used existing frames to indicate what verbs would make good examples. We chose a subset of
FrameNet frames discussed in (O’Connor, 2012) as well as those we thought would be interesting
in terms of granularity (general or specific) and the types of evokers involved (concrete or abstract).
We then chose one WordNet sense as a seed that we thought best represented the FrameNet based
on their glosses.The evaluators were made up of 4 members from within our NLP group - not all of
which are directly associated with this paper. For a select group of frames we generated 40 senses.
A positive set of 20 evokers were chosen randomly from all of the generated evokers with glosses
that did not explicitly mention the seed senses’ lemma. This choice was made so that the evaluators
had to actually consider the meaning of the senses instead of looking at surface features. We also
chose a negative set of 20 random senses that were not in the evoker set but are WordNet sister terms
(share the same direct hyponym) of one of the evokers. We pick the negative set this way because
randomly choosing WordNet senses tends to generate obviously unrelated terms which would not
help to understand what our system misses.

For each sense, we created a question consisting of its lemma, part of speech and gloss; we
provide the same information for the seed sense as well. The evaluators were then given a multiple
choice question that asks how the word was related to the seed sense based on the given glosses and
their own knowledge. Each choice is meant to classify the relation between the two senses into one
of the following relations: type of, causes, affected by, instrumental, preceded by, other, or does not
evoke. The choices from one question in the evaluation of kill%2:35:00 are below.

• hit_squad is always a type/kind/subclass of kill
• a(n) hit_squad typically causes or intends to cause a(n) kill event
• a(n) hit_squad is typically directly changed by or experiences a(n) kill event
• a(n) hit_squad is typically intended to be used for a(n) kill event
• a(n) hit_squad is typically preceded by a(n) kill event
• a(n) hit_squad is typically related to a(n) kill event in a way not specified above
• a(n) hit_squad is not typically related to a(n) kill event in any way

For each survey we created two sets of results, the first combines all except the last choice, "does not
evoke", into a super category named "evokes". Though this is a very shallow evaluation it is meant
to assess how well we generate evokers - i.e. one of the task in creating a frame based resource.
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Table 1. Results for a sample of generated frames.
Frame Seed Category Only Positive(20) Positive and Negative(40) Generated

Binary 17/19 = .895 34/39 = .872kill%2:35:00 All 6/14 = .43 23/33 = .7 186

Binary 16/18 = .800 27/38 = .711injure%2:29:00 All 8/13 = .615 19/29 = .656 109

Binary 15/19 = .789 29/38 = .763ingest%2:34:00 All 3/14 = .214 17/32 = .531 1228

Binary 9/13=.692 15/31 = .484inform%2:32:00 All 0/9 = 0 6/23 = .261 59

Binary 0/18 = 0 20/38 = .526start%2:30:00 All 0/18 = 0 20/38 = .526 3720

The second set treats each of the seven choices individually; this evaluation is meant to determine
if the thematic roles that linked an evoker to a seed sense are trustworthy enough to base our frame
element generation on them. The first set of system responses is produced based on whether the
word was in the evoker set, if it is then the system responds, "evokes"; otherwise it responds, "does
not evoke". In the second evaluation we generate the system’s response based a simple set of rules
regarding the thematic role paths between the positive set of evokers and the seed term in the graph
generated from the OWL2 KB. These rules are reproduced below:

• y v ∃agent−.x t ∃cause−.x t ∃effect−.x⇒ "cause" - y directly causes x
• y v ∃agent.x t ∃cause.x t ∃effect.x⇒ "preceded by" - x directly causes y
• y v ∃affected−.x⇒ "affected by" - y is affected by some x
• y v ∃instrument−.x⇒ "instrument" - y is the instrument of
• y v x⇒ "type of" - y is subsumed by x
• y v ont:act u ∃of.x⇒ ”typeof” - y is the act of x
• y v ∃of−.( by%4:02:00 u ∃val.x)⇒ "type of" - y is accomplished by doing x
• otherwise the system answers "other"

For both cases we consider only those answers where more than half of the evaluators agreed. The
end goal is to produce the same quality of knowledge as a human annotator; it tells us very little
when there is not strong agreement amongst annotators. We then compute the agreement between
the system and the majority answer. The table reports these numbers as <amount of correct answers
for question subset>/<number of questions where human agreement is greater than half> = <ratio>.
We also show results only considering the questions generated from the positive set to demonstrate
the system’s precision.

We can see from Table 1 that kill%2:35:00 and injure%2:29:00 performed the best overall. The
evaluators agreed with kill%2:35:00’s evoker set (binary) 17 times out of the 19 instances there
was a majority consensus. We can see that overall inter-rater agreement was very high - there was
only one instance of a split decisions between "evokes" and "does not evoke". Of course the inter-
rater agreement and the agreement between the system and the majority answer are lower when
considering the categories individually instead of as two distinct sets. The binary choice scores for
all but start%2:30:00 are very encouraging. Considering the simplicity of our search method theses
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scores verify the suitability of dictionaries as input for the evoker generation task. Even when
considering each category independently the scores are encouraging. Despite using a very simple
set of classification rules the percentage of correct positives was significantly better than randomly
selecting 1 of the 6 possible categories (.17). These scores indicate that the semantic paths between
evoker and seed can be trusted enough to use to infer a frame’s elements from them.

Our system performs noticeably worse when dealing with abstract concepts. There are two
reasons for these instances of poor performance. Firstly, the semantic parser may mistag a word
sense which could either include evokers that should not be there or exclude evokers that should.
Mistaggings are expected to occur more often for abstract senses like those for the word, "get", or,
"have", which generally have more senses with vague distinctions between their uses. Although this
does happen for more specific senses, for example, the gloss for antiknock%3:00:00:leaded:00 is
"suppressing or eliminating engine knock in combustion engines" and eliminating is tagged as elim-
inate%2:30:00 which means, "[to] kill in large numbers". When looking for evokers of kill%2:35:00
our system not only finds antiknock%3:00:00:leaded:00 but also octane_rating%1:23:00, "a mea-
sure of the antiknock properties of gasoline". Addressing this issues is complicated, obviously im-
proving the TRIPS parser’s tagging performance on WordNet glosses would help. This is actively
being worked on; however, it is unlikely that the problem will be completely eliminated. Another
area to explore is assessing the trustworthiness of the paths between a frame and its evokers. A trend
we observed when exploring the erroneous evokers was that the paths between them and the frame
tended to be long, had concepts relatively close to the top of the ontology, and involve underspeci-
fied roles like suchthat, parenthetical, or associatedwith. Taking into consideration the path’s length
and the roles and concepts involved we may be able to identify suspect evokers.

A second issue with abstract frames is that evaluators can overwhelmingly disagree with the
system even though its reasoning is sound. For instance, the system says that batwing%1:06:00,
"one of a pair of swinging doors (as at the entrance to a western saloon)". Evokes ingest%2:34:00
but no one agreed with that. The line of reasoning is this: batwings are located at bars, bars serve
drinks, and drinks are suitable to ingest. The discrepancy between the evaluators and the correct
line of reasoning indicates that our definition of what it means to evoke a sense is flawed and should
be restricted in some way. A possible solution for this issue is very similar to the trust scheme
presented above. We would take into account path length, the roles used, and the abstractness of
the concepts involved. The success of this solution depends on our ability to use those factors to
identify the threshold between human evaluators determining if a sense evokes a frame or not.

4.2 Generating Frames

Here we describe initial investigations into generating frames. Frame elements can be thought of
as thematic roles in context. For instance, in FrameNet’s Killing frame, an agent in the context of
a kill action is called the Killer; in a more abstract frame, Commerce_goods-transfer, an entity is
considered a buyer if it is an agent in the context of a buying event or if it is a recipient in the context
of a selling event. With this in mind we base our element search on the thematic roles associated
with the seed sense.

We begin by creating a set of examples of all of the target frame’s elements. The example set
is made up of not just evokers - where a word is defined in terms of its relation to the seed sense
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- but also relations that define either the seed sense or a sense that is subsumed by the seed. What
this means is that we use both murderee%1:18:00 (an evoker defined as a patient in a kill%2:35:00
event) and animal%1:03:00 which is not defined in terms of kill%2:35:00 but is used by one of
kill%2:35:00’s sub-senses, butcher%2:35:00, which is defined as a kill%2:35:00 event with an an-
imal%1:03:00 as the patient. We then group the examples by the chain of thematic roles between
it and the seed sense. If we were looking at a frame for kill%2:35:00 then concepts like poi-
soner%1:18:00 and bounty_hunter%1:18:00 would be grouped together because they both relate to
kill%2:35:00 via the agent role. We first look for relationships that indicate special frame-frame
relations. For instance, subsumption relations indicates a sub-frame relationship and a cause or ef-
fect relation (but not their inverse roles) indicates the frame-frame relations of the same name. For
each group not handled by special relations, we run a hierarchical clustering algorithm that works
as follows. We begin with a set of concepts grouped by their thematic roles as described above. For
each pair of elements in the set, we find their anonymous least common subsumer (ALCS) based on
a graph generated much the same way as the graph in Figure 2. The pair with the ALCS furtherest
from the top of the ontology - i.e. the least general ALCS - is chosen to cluster together. From the
set of concepts, the elements in the pair are removed and the ALCS of that pair is added. This is
continued until the there is only one element in the set which subsumes every element in the original
set.

After the hierarchy is produced we are left with a question: which of these clusters should form
the frame’s element for their associated thematic role. The root cluster is sometimes unsatisfyingly
general. But, the leaf nodes and often the cluster directly above them are needlessly specific and
end up just presenting knowledge generated in (Allen et al., 2013) in a different way. For this
experiment, the cluster is searched from the top of the hierarchy down until a cluster no longer
subsumes any of the elements in a set of seven very abstract concepts that convey little knowledge
in the context of the roles in which they appear. Some examples include, physical-object, situation,
and the root of the TRIPS ontology. Failing to find a specific enough cluster, the root of the cluster
hierarchy is used.

Putting it all together we generated several frames from a small subset of seed senses that evoke
kill%2:35:00. For an initial test, we limited the paths used to generate frame elements to only
those that relate to the frame’s seed sense via a path who’s edge to the seed is an inverse role. e.g.
poisoner%1:18:00 − agent− → kill%2:35:00; but not paths like mortal_enemy%1:18:00 −
pivot → want − theme → kill%2:35:00. This choice was made because elements are meant to
describe common participants in the frame and not the roles the frame itself participates in. The el-
ements for kill%2:35:00 appears in Figure 3 presented in a fashion similar to FrameNet. Evaluating
element generation this early in our experiments is difficult to do in a quantifiable way. Instead we
will informally look at the frame elements generated for kill%2:35:00 and compare them to the core
elements in FrameNet’s Killing frame. Unlike FrameNet’s LU’s and frames, the frame elements do
not suffer any serious coverage problems. Comparing the frame generated for kill%2:35:00 to the
hand annotated Killing frame in FrameNet we find some analogues between the frame elements.
For instance, both have agent (Killer), cause, and patient (victim) elements. Agent and patient have
types that are comparatively more specific but not far off from their FrameNet analouges, (Killer
and Victim). Theme is erroneously included here due to a parsing error in hit_list%1:10:00’s gloss,
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Figure 3. The elements, their semantic types, as well as the evokers that are classified as that element.

"a list of victims to be eliminated(kill%2:35:00)". Effect also appears due to a parsing error, where
body_count%1:23:00, "of troops killed in an operation or time period", is erroneously defined as
the effect of some kill%2:35:00 event.

The frame is missing important elements as well, for instance, our system fails to generate
analogues of FrameNet’s Means and Instrument elements. Manually exploring the thematic role
graph, we found several paths that would indicate a relation similar to Instrument, like this path
between pesticide and kill1: pesticide%1:27:00 − theme− → use − of → purpose − val →
kill%2:35:00 (pesticide is used for the purpose of killing). Poleaxe%1:06:01 has the same path to
kill%2:35:00. However, those paths would be grouped in a different frame element than something
like halter%1:06:02− theme− → use− agent→ hangman%1:18:00− agent− → kill%2:35:00
(a halter is used by a hangman to kill)2. One solution is to define abstract path patterns such as x−
theme− → use−([of→ purpose−val]|[agent→ person−agent−])→ y⇒ x−_instrument− → y.
Whether a small set of manually created patterns would suffice or if a large set of learned patters is
needed remains to be seen.

5. Future Work

In addition to the fixes proposed in the previous section, we would like to explore how to combine
several frames into a single, abstract frame. Specifically, we would like to discover transformation
rules from one frame element to another. e.g. the patient of a kill event is also the patient of
the resultant die event. This is imperative to eventually be able to generate abstract frames. Like
Commerce_goods-transfer where we want to generate an element that is defined as being an agent
in a buying event or a recipient in a selling event. The ability to abstract different points of view,
like buying and selling, into a single frame would go a long way towards offering knowledge on par
with FrameNet.

1. Using only paths ending with inverse roles prevents us from generating the corresponding element.
2. In our input hangman%1:18:00 is incorrectly related to kill via the suchthat relation rather than agent−.
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6. Conclusion

In this paper we presented work toward generating frame-like knowledge from WordNet. Our ap-
proach differs from the reviewed work in section 2 due to its use inference, high-level techniques,
input, and work towards learning frame elements. It explores relatively deep knowledge generated
in (Allen et al., 2013) to identify frames and their evokers and then performs semantically informed
inference to discover frame elements. To assess our input we carried out a small survey designed
to test if the relationship between a frame and its evokers fit human intuition. We then presented
one method to learn frame elements from the processed input and compared it to FrameNet. Our
ultimate goal is to use dictionary type resources to automatically generate a lexical KB of frames
with greater coverage of evokers and granularity of frames than FrameNet. The purpose of the
experiments presented above was to test our basic notions about how information in these sources
relate to frames, evokers, and frame elements. Both experiments identified problem areas but the
results are encouraging enough to warrant continued work.

Acknowledgements

The work presented in this paper was supported in part by the National Science Foundation (grant
IIS-1012205) and The Office of Naval Research (grant N000141110417).

References

Allen, J., de Beaumont, W., Galescu, L., Orfan, J., Swift, M., & Teng, C. M. (2013). Automatically
Deriving Event Ontologies for a Commonsense Knowledge Base. Proceedings of the Interna-
tional Conference for Computational Semantics.

Baker, C. F. (2012). FrameNet, current collaborations and future goals. Language Resources and
Evaluation, 46, 269–286.

Burchardt, A., Pennacchiotti, M., Thater, S., & Pinkal, M. (2009). Assessing the impact of frame
semantics on textual entailment. Natural Language Engineering, 15, 527–550.

Johnson, C. R., Petruck, M. R. L., Baker, C. F., Charles, M., Ruppenhofer, E. J., & Fillmore, C. J.
(2003). FrameNet : Theory and Practice.

Laparra, E., & Rigau, G. (2009). Integrating wordnet and framenet using a knowledge-based word
sense disambiguation algorithm. Proceedings of RANLP, 9.

Materna, J. (2012). LDA-Frames : An Unsupervised Approach. Computational Linguistics and
Intelligent Text Processing, 376–387.

Miller, G. a. (1995). WordNet: a lexical database for English. Communications of the ACM, 38,
39–41.

O’Connor, B. (2012). Learning Frames from Text with an Unsupervised Latent Variable Model.
Shi, L., & Mihalcea, R. (2005). Putting Pieces Together : Combining FrameNet , VerbNet and

WordNet. In Computational linguistics and intelligent text processing, 100–111.

134


