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Abstract 
Dehaene (2006) has posited that humans possess a set of core geometric abilities regardless of 
culture, language or education.  In this paper, we develop a computational model (called CoreGeo) 
of core geometric abilities based on a more general theory of fractal analogical reasoning.  Fractal 
analogical reasoning enables the calculation of confidence in an answer and the automatic 
adjustment of level of resolution if the answer is found to be ambiguous. We present results from 
running CoreGeo on Dehaene’s test of core geometry problems. We also compare our results with 
Dehaene’s results from different cultures and show that CoreGeo performs about as well as 
humans at core geometry tasks.  

1.   Mathematical Reasoning and the World around Us 

What is the origin of human mathematical abilities? Does geometry constitute a core 
set of abilities present in humans, regardless of culture, language or education?  Lakoff & 
Núñez (2000) raised the first of these questions in their analysis of human mathematical 
abilities from a cognitive science perspective.  Their arguments, principally that the 
embodied mind of humans creates mathematics and therefore it is subject to analysis 
using cognitive science methodologies, suggest that there may be innate principles in the 
mind which afford mathematical and geometric reasoning capabilities. Lakoff & Núñez 
discuss number discrimination in human babies, and in particular look at subitizing (the 
ability to determine the number of objects presented from a glance), drawing on the work 
of others (among them, Mandler & Shebo 1982; Trick & Pylyshyn, 1993, 1994), to note 
that subitizing is not a pattern recognition process. They point to Dehaene & Cohen’s 
(1994, 1996) work with patients who have suffered injury which prevents them from 
attending to things in their environment in a serial fashion (and therefore cannot count 
them), but nonetheless perform limited subitizing.  Not unexpectedly, statements such as 
these, and others made in their book have attracted much criticism to Lakoff & Núñez.  
For example, Schiralli & Sinclair (2003) appear to take issue with the use of metaphor 
rather than pattern recognition as the basis of the Lakoff & Núñez argument, citing 
repeated examples of the derivation of mathematical principles precisely due to the 
discovery of patterns.  Insofar as we are aware, the debate of whether the embodied mind 
gives rise to mathematics, or whether mathematical principles are otherwise transcendent 
continues without resolution. 
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Dehaene and colleagues (2006) posed the second question above: do humans possess a 
set of core geometric abilities? They designed and conducted a study of spontaneous 
geometrical knowledge of the Mundurukú, an Amazonian indigene group.  The study 
looked at two nonverbal tests designed to probe conceptual primitives of geometry.  It is 
the first of these tests, inspired by a test administered in an earlier study by Franco  & 
Sperry (1977) of the hemispheric localization of geometric processing in patients with a 
surgical disconnection between the left and right hemispheres of their brain, that is of 
interest here.  This particular test was designed to probe the Mundurukú’s intuitive 
comprehension of the basic concepts of geometry, including points, lines, parallelism, 
and the like (Dehaene et al. 2006).  For each of these concepts, Dehaene et al. designed 
an array of six images, five of which incorporated some desired concept, while the sixth 
image did not.  In essence, each of these problems was a test of perceiving visual oddity. 

Dehaene et al. (2006) report that the Mundurukú fared very well with core concepts of 
topology, Euclidean geometry, and basic geometrical figures, but they experienced more 
difficulty in detecting symmetries and metric properties. The Mundurukú faired poorly on 
two domains, each of which Dehaene et al. (2006) point out involve the mental 
transformation of one shape into another, followed by a second-order judgment about the 
nature of that transformation. Dehaene suggests that perhaps geometric transformations 
are more inherently difficult mathematical concepts, or that the detection of such 
transformations may be more difficult in static images.  Dehaene also tested for 
comparison a group of American children and adults, and found that both the American 
group and the Mundurukú group shared some of the same difficulties on the task, 
although American adults performed at a higher level overall.  This led Dehaene et al. to 
conclude that there exists some shared (possibly innate) competence for basic 
geometrical concepts, regardless of culture, language or education (Dehaene et al. 2006). 

Dehaene et al. however do not provide an information-processing account of the core 
geometric abilities: what kinds of knowledge, representations, and reasoning might 
enable the core geometric abilities?  In this paper, we develop a computational model 
called CoreGeo which is based on a more general theory of fractal analogical reasoning 
(McGreggor, Kunda & Goel 2011; McGreggor & Goel 2012). Fractal analogical 
reasoning enables the calculation of confidence in an answer, as well as the automatic 
adjustment of level of resolution if the answer is found to be ambiguous. We present 
results from running CoreGeo on Dehaene’s test of 45 core geometry problems. We also 
compare our results with Dehaene’s results from different cultures and show that 
CoreGeo performs about as well as humans at core geometry tasks.  

2.  Reasoning based upon the Fractal Representation 

In our research, we explore the extent to which the fractal representation affords 
analogical reasoning (McGreggor et al. 2011; McGreggor & Goel 2011, 2012); we 
briefly present the fractal representation in an appendix below, as it has appeared in 
previous papers.  The representations of the visual input given to our system represent the 
whole of the scene, and do not segment or otherwise seek to discriminate between objects 
in the scene: there is no notion of either qualitative or quantitive in the fractal 
representation, nor is there any distinction between a shape and its edge.  Furthermore, 
the general strategy we developed provides a singular method of using similarity scores 
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(chiefly determined via recall of objects indexed via features from memory) as a means 
both for declaring analogically derived answers as well as providing evidence for those 
cases in which the scene should be represented at a different level of abstraction. There 
are no additional special purpose mechanisms to augment the reasoning.  

For these reasons, exploring the effects of the fractal representation and reasoning on 
the Dehaene problem set seemed prudent.  In addition, we wished to explore the extent to 
which strictly visual representations could afford that agent rudimentary geometric 
reasoning capacity. 

Figure 1. The CoreGeo computational model. 

2. 1  The CoreGeo algorithm 
Previously, we developed a general strategy of fractal reasoning for solving oddity 
problems (McGreggor & Goel 2012).  We now present an algorithm which is derived 
from that strategy as a means for direct application to the Dehaene set of core geometry 
problems.  This algorithm, which we call CoreGeo, consists of three phases: a 
preparatory phase in which the given problem is segmented into its constituent images 
and the images encoded and represented as mutual fractals; a reasoning phase which 
determines the similarity between those mutual fractals to see if any of them may prove 
odd; and a re-representation phase in which the representational strategy is shifted 
automatically to a different level of abstraction should no single answer stand out.  A 
schematic of the model is shown in Figure 1 above. 
 In practice and as shown in our work on the Odd One Out (McGreggor et al. 2011), the 
re-representation phase is managed in close concert with the representation phase as a 
nested loop.  In this way, the two phases of reasoning and re-representation occur as a 
unified execution phase.  Upon the conclusion of the iterative reasoning, the most 
visually odd item may be indicated. 
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The CoreGeo algorithm also incorporates the similarity distribution technique used in 
our work on the Odd One Out problem domain as a means for calculating individual 
object similarity.  The CoreGeo algorithm attempts to isolate the novel object as being 
the statistical outlier.  The threshold value E corresponds to a deviation from the mean 
equivalent to some desired confidence level. 

Algorithm 1. The CoreGeo Algorithm. 

 

To determine from a group of geometrically related objects M which of 
the objects does not share the sought-for relationship.  The specifics of the 
relationship are not known at the outset of the problem. 
 
P R E P A R A T O R Y  
Let M := { O1, O2, ... On } represent a group of objects.   
Let A := { a1, a2,  ... al } represent an ordered range of abstraction, from 
most coarse (at a1) to finest (at al).    
Let G := { g1, g2, ... gm } represent an ordered range of complexity 
groupings, from 2-combinations (at g1) to (n-1)-combinations (at gm). 
Thus |G| = |M|-2. 
Let Ε be a real number which represents the number of standard 
deviations beyond which a value’s answer may be judged as “confident.”  
E then is the threshold value which groups objects into the TYPICAL or 
ODD sets according to their similarity value.   
 
R E A S O N I N G  &  R E - R E P R E S E N T A T I O N  
For each complexity g  G: 
 For each abstraction a  A: 

• Form a set of relationships R from the objects in M according to g 
and a 

• Derive the set of similarity values S := { S1, S2, S3, S4, ... Sn } from 
the set of relationships R, using the similarity distribution algorithm 

• Set μ ← mean ( S ) 
• Set σμ ← stdev ( S )/√n 
• Set D ← { D1, D2, D3, D4, ... Dn } where Di = (Si-μ)/σμ 
• Set TYPICAL �  
• Set ODD �  
• Distribute the objects Oi  M by this rule: 

if Di > E , then ODD � ODD ∗ { Oi } 
else TYPICAL � TYPICAL ∗ { Oi } 

• If |ODD| = 1, return the object Oi  ODD  
• otherwise there exists ambiguity, and re-representation must occur. 

 
If no answer has been returned, then no answer may be given 
unambiguously. 
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2. 2  An example 
Let us illustrate the CoreGeo algorithm by working through one of the Dehaene problems 
in detail.  The chosen problem is Dehaene #35, which seeks to determine an 
understanding of symmetry transformation about a mixed axis.  The problem can be seen 
in figure 2. 

 
Figure 2. Dehaene #35, Transformation with mixed axial, symmetry. 

2. 2 1  Segmentation phase 
First, the algorithm must segment the problem into its constituent subimages, which we 
shall label O1 through O6.  In this example, the problem is given as a 720 x 540 .PNG 
image in the RGB color space.  The subimages are arrayed in a 3x2 grid within the 
problem image.  At this resolution, we found that each subimage fits within a 210x210 
pixel image. Note that the matrix arrangement of the subimages is immaterial to the 
problem at hand: the one which does not belong would be determined as not belonging 
without regard to its specific position. 

Even though the objects or shapes in the subimages appear to be regular geometric 
shapes, the algorithm and the representation do not interpret them in any manner other 
than as mutual fractals.  In addition, some noise and image artifacts are inevitably 
present, even though they may not be evident in the illustrations here.   

2. 2 2  Representation Phase 
Given these six subimages, the strategy now groups subimages as 2-combinations, pairs, 
such that each subimage is paired once with the other five subimages, to form 10 distinct 
2-combinations.  The strategy then calculates the mutual fractal representation Rij for 
each pair of objects Oi and Oj as described above.  

The level of abstraction used initially is identical to the largest possible pixel 
dimension, in this case 210x210 pixels.  For this example, the algorithm shall determine 
the finer levels of abstraction by uniform subdivision of the subimages into block sizes of 
105x105, 52x52, 26x26, 13x13, and 6x6 pixels. 
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2. 2 3  Reasoning Phase 
To determine the subimage which does not possess the same geometric relationship as 
the others, the algorithm must determine the dissimilarity of each subimage.  The 
CoreGeo algorithm calculates the dissimilarity via the distributed similarity technique. At 
the coarsest level of abstraction, these are the distributed similarity values for the 
subimages in the example problem. 

Table 1.  Similarity distribution for the initial 210x210 level of abstraction. 

2. 3  Concluding the example 
Once the distribution of similarity is accomplished, the algorithm must examine the 
resulting values to see if any subimage has a substantially lower score than the others.  
The distinction between the lowest and the next-lowest score can be quite close (in this 
case, 0.2273 vs. 0.2303, a delta of only 0.003).  If we calculate the mean of the similarity 
values and standard deviation of each of these values from that mean, a different picture 
emerges.  In this example, the similarity mean is 0.2379 and the standard deviation is 
0.0032.  Therefore, we get the following table of deviations and subsequent confidences: 

Table 2.  Deviations and confidences for the initial abstraction level.  

As can be seen, both the first and third answers are values well below the standard 
deviation and therefore at a strong confidence level. The negative values here are to 
indicate the least similar outliers; the strong positive confidence in the fourth answer, in 
contrast, indicates a strong prototype of the group.  Thus, one is left with an ambiguous 
answer at this level of abstraction, and the algorithm must re-represent each of the 2-
combinations at a finer level and try again. 

      

0.2273 0.2416 0.2303 0.2484 0.2419 0.2381 

 

      
3.302 

-99.9% 
1.151 
75.0% 

2.379 
-98.3% 

3.257 
99.9% 

1.227 
78.0% 

0.045 
3.6% 
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2. 4  Refinement 
By re-representing the 2-combinations at increasing levels of abstraction, it is possible to 
determine an unambiguous answer.  Table 3 illustrates the results of that successive 
refinement of abstraction. 

Table 3. Mean, Standard Deviation, and Confidence for various levels of abstraction 

As can be seen in the table, there are three levels of abstraction for which a singular 
answer stands out as significantly odd, while for the other levels there exists ambiguity.  
If the algorithm strictly followed the philosophy of proceeding from coarsest to finest 
abstraction until a value stands out, then the CoreGeo algorithm would select answer 6 at 
the abstraction denoted by 105x105 partitioning.  This answer, unfortunately, is incorrect: 
the proper answer is answer 1.  Inspection of the results shows that for all levels of 
abstraction except for the 105x105 level, answer 1 is among the chosen values which 
exceed a 95% confidence.  Why would this not be true at the 105x105 level? 

2. 5  The advent of significance 
A closer inspection unveils the mystery.  At the 105x105 level, the standard deviation 
from the mean for all values is remarkably low (in this case, 5.5x10-5).  That deviation is 
two orders of magnitude smaller than all other abstraction levels.  Thus, while the signal 
at that level of abstraction is unambiguously in favor of answer 6, the signal itself is too 
weak to merit consideration.  In contrast, the unambiguous signal for answer 1 at the 
52x52 level of abstraction is three orders of magnitude stronger. 

The similarity calculations arise from the comparison of features present in the fractal 
representations of the relationships being examined.  As noted earlier, in the chapter on 
visual similarity, the number of features available gives rise to the presence or absence of 
ambiguity, either through a sparsity of features or an increase in the homogeneity of 
features.  In this example, we find evidence of both of these, yet the data itself has 

 
μ σμ       

210x210 0.2379 0.003 -99.9% 75.0% -98.3% 99.99% 78.0% 3.6% 

105x105 0.189 5.5x10-5 41.1% 96.3% -39.6% -27.3% 98.9% -99.9% 

52x52 0.271 0.005 -95.2% -74.3% 99.9% -65.4% -93.9% 92.6% 

26x26 0.337 0.002 -98.9% -99.7% 99.9% 42.6% 3.7% 82.6% 

13x13 0.399 0.001 -99.9% -91.9% 99.9% 90.1% 69.6% -60.2% 

6x6 0.494 0.001 -98.3% -99.8% 99.9% 80.0% 53.4% 2.8% 
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yielded now a clue for detecting homogeneity: the coefficient of variation (CV), a 
normalized measure of the dispersion of the values.   

We now can offer an amendment to the CoreGeo algorithm.  The selection of a 
threshold confidence value itself is not enough: the signal must be unambiguous and 
strong before the algorithm declares a solution.  With this addition, we capture a powerful 
notion of analogy making: the analogy must be significant enough to warrant notice. 

Table 4. CV and Confidence for various levels of abstraction 

3.  Results of CoreGeo on the Dehaene set 

The CoreGeo algorithm was run against the 45 problems provided to me by Dehaene via 
personal correspondence, and are the same problem set examined in Lovett et al. (2008).  
The problems are grouped into categories of mathematical or geometric reasoning.   

3. 1  Preparation of the material 
The Dehaene problem set was given as individual slides contained within a PowerPoint 
document.  Each slide was exported into a single image in the .PNG format.  Each 
problem image was 720 x 540 pixels, in the RGB color space.  Each problem consists of 
six subimages, each of which upon inspection was found to fit well within a 210 x 210 
boundary.   

3. 2  Levels of abstraction considered and calculations performed 
The levels of abstraction used ranged from a coarse partition of 210x210 pixels, down to 
a fine partitioning of 6x6 pixels, giving 6 levels of abstraction, using a strategy of halving 
the pixel dimension at each successively finer level of abstraction.  The CoreGeo 
algorithm is capable of examining all combinations of the six subimages; however, only 
2-combination relationships were examined in this experiment.  This restriction was 
made only to serve the interests of experimental time, and illustrate the use of the 

 CV 
σμ / μ       

210x210 0.0126 -99.9% 75.0% -98.3% 99.99% 78.0% 3.6% 

105x105 0.0003 41.1% 96.3% -39.6% -27.3% 98.9% -99.9% 

52x52 0.0185 -95.2% -74.3% 99.9% -65.4% -93.9% 92.6% 

26x26 0.0059 -98.9% -99.7% 99.9% 42.6% 3.7% 82.6% 

13x13 0.0025 -99.9% -91.9% 99.9% 90.1% 69.6% -60.2% 

6x6 0.0020 -98.3% -99.8% 99.9% 80.0% 53.4% 2.8% 
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algorithm on the problem set.  It is important to note that the goal of the experiment was 
not to improve upon any prior computational model results. 

At each level of abstraction for each problem, the algorithm determined the similarity 
value as distributed amongst the six candidate images.  For these calculations, the 
algorithm used the Tversky formula (Tversky 1977) and set alpha and beta to 1.0, thus 
conforming the model of Gregson and Sjöberg (Gregson, 1976; Sjöberg, 1971), as it is 
unclear which of the difference relationships to favor.  As prescribed by the CoreGeo 
algorithm, calculations continued until the confidence in an answer exceeded a given 
threshold of 95%, or until all levels of abstraction were calculated.  For this experiment, 
that threshold value was able to be varied.  After the initial pass of calculations, any 
problems found to be either incorrect or ambiguous were reprocessed, using a fine 
stepping down of partitioning, from 210x210 pixels down to 10x10 pixels, in increments 
of 10 each time, for a total of 21 levels of abstraction.  The results reported below reflect 
the outcome of these passes. 

The Java code and entire Dehaene set of problems are available via inquiry at our lab’s 
research site, to facilitate replication of these results and future studies. 

3. 3  Performance 
The overall results are that the CoreGeo algorithm detected the correct answer at a 95% 
or higher level of confidence on all of the 45 problems.  Of these problems where the 
correct answer was detected, 15 were ambiguously so.  

3. 4  Discussion of the specific results 
As can be plainly seen in the table above, there are certain problems and categories for 
which the CoreGeo algorithm successfully identifies a correct answer unambiguously, 
and others for which the algorithm is consistently ambiguous.  

Figure 2. Dehaene problem #4, topological inside/outside 
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3. 4 1  Topological reasoning 
 The CoreGeo algorithm performs well on the problems involving topological reasoning 
except for one type: inside vs outside.  Figure 2 illustrates the Dehaene problem #4. 
 As in all the examples, the features over which the CoreGeo algorithm reasons are 
derived from the fractal representation.  Between the features themselves, there is no 
connection, and therefore no ability to directly associate the location of the dot in the 
figures above as either within or without the closed line. 

3. 4 2  Geometrical reasoning 
 The CoreGeo algorithm performs well on problems involving geometric shapes and 
geometric reasoning, with two notable exceptions: reasoning about trapezoids, and 
reasoning about parallel lines.  We note that both of these problems involve the notion of 
parallelism.  

Figure 3. Dehaene problems #26 and #40 

In the case of Dehaene problem #26, while the shape lacking non-parallel edges is 
apparent, at the fractal feature level, the comparisons would be with respect to finding 
similarity between the angles themselves.  Each of the other shapes contains at least one 
oblique angle and two acute angles, and so the ambiguity for this problem would seem to 
indicate that the numerosity of the angle kinds is not readily inferred from the fractal 
representation.  In Dehaene problem #40, as in Dehaene problem #4 above, the 
satisfactory answer would imply that comparisons be made between the whole line 
shapes, rather than their constituent parts (that is, the fractal representation of the images 
would note that line segments may be formed via the collage of other line segments).  In 
both problems, the oddity lies in the presence or absence of parallel edges. 
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Table 6. Comparison of the CoreGeo Algorithm to other studies 

problem /category Core Geo Lovett et al. American Mundurukú 

Total noted correct  45 39 43 40 
Correct but ambiguous 15 0 12 10 

1 Training Color yes yes yes yes 
2 Training Orientation yes yes yes yes 
3 Topology Holes yes yes yes yes 
4 Topology Inside/Outside ambiguous 

 
yes yes yes 

5 Topology Closure ambiguous yes yes yes 
6 Topology Connexity yes yes yes yes 
7 Topology Belongs To ambiguous yes yes yes 
8 Geometry curved lines yes yes yes yes 
9 Geometry Convexity yes yes yes yes 

10 Geometry straight lines yes yes yes yes 
11 Geometry aligned ambiguous yes yes yes 
12 Geometry quadrilateral ambiguous yes yes yes 
13 Geometry right angle triangle ambiguous 

 
yes ambiguous yes 

14 Geometry right angle cross yes yes yes yes 
15 Geometry right angle abut yes yes yes yes 
16 Geometry distance yes yes yes yes 
17 Geometry circles yes yes yes yes 
18 Geometry center of circle yes yes yes yes 
19 Geometry midpoint ambiguous yes ambiguous ambiguous 
20 Geometry Equilateral triangles yes yes yes yes 
21 Geometry Proportion 1:3 ambiguous  ambiguous yes 
22 Geometry Diagonals yes   ambiguous 
23 Geometry Square yes yes yes yes 
24 Geometry Rectangle ambiguous yes yes yes 
25 Geometry Parallelogram ambiguous yes ambiguous yes 
26 Geometry Trapezoid ambiguous yes yes yes 
27 Transformation vertical axial 

 
yes yes ambiguous  

28 Geometry vertical axial symmetry yes yes ambiguous yes 
29 Geometry horizontal axial symmetry yes yes ambiguous ambiguous 
30 Geometry random axial symmetry yes yes yes yes 
31 Transformation translation yes yes yes ambiguous 
32 Transformation point symmetry ambiguous yes yes ambiguous 
33 Transformation horizontal axial 

 
ambiguous yes ambiguous ambiguous 

34 Transformation rotation yes  ambiguous  
35 Transformation mixed axial symmetry yes yes ambiguous ambiguous 
36 Transformation homothety yes yes yes ambiguous 
37 Geometry Parallels yes yes yes yes 
38 Geometry Chirality 1 yes  ambiguous  
39 Geometry Proportions ambiguous    
40 Geometry Parallels 2 ambiguous 

 
yes yes yes 

41 Geometry Chirality 2 yes yes yes yes 
42 Geometry Chirality 3 yes yes yes yes 
43 Series Arithmetic yes yes yes ambiguous 
44 Geometry Chirality 4 yes  ambiguous  
45 Series Geometric yes yes yes ambiguous 

 



K. MCGREGGOR & A. GOEL 

14 

3. 5  Comparison against another computational model 
In Lovett et al. (2008) and Lovett & Forbus (2011), they describe a computational model 
for Dehaene’s test viewed as a visual oddity task.  Their model employs four tools: 
CogSketch to construct the qualitative representations (Forbus et al. 2008); SME to 
model comparison and similarity (Falkenhainer et al. 1986); MAGI to model symmetry 
detection (Ferguson 1994); and SEQL to model generalization (Kuehne et al. 2000).  In 
their approach, a chosen Dehaene problem is first segmented into the individual images, 
and those images are then represented via CogSketch.  Next, SEQL is used to create a 
generalization of those representations. The individual images are compared against the 
generalization and scored via SME.  If one image is noticeably less similar to the 
generalization, it is deemed the one that doesn’t belong.  Lovett et al. note that the actual 
processing consists of a series of these “generalize and compare” trials, selecting subsets 
of the individual images from which to create generalizations.  They appear to limit these 
subsets to be either the top three or bottom three images.  Further, since their model uses 
representations of either the shape or the edges of the shape but not both, the system 
decides which version to use based upon an examination of the first image in the 
problem: if the image contains multiple shapes or a shape with a single edge (e.g. a 
circle), then the shape qualitative representation is used; otherwise, the edge qualitative 
representation is used.  They do note that their system will abandon the edge 
representation if SEQL cannot generate a sufficient generalization (for example, if the 
images subject to generalization contain varying numbers of edges).  The system looks 
for a sufficiently distinct candidate (they suggest a confidence of 95% as sufficient).  If 
one is not found, then the system attempts additional trials, switching between shape and 
edge representation or varying the similarity scoring. 
 Lovett et al. (2008) and Lovett and Forbus (2011) report that their system correctly 
solves 39 of the 45 problems.   On the six problems that the Lovett et al. model misses, 
the CoreGeo algorithm answers correctly on 4 of them and ambiguously correct on the 
remaining two. A comparison with respect to ambiguity between the models is not 
possible, as Lovett et al. do not report the confidence of their answers or provide a means 
for calculating the confidence from the individual scores per answer choice.  

3. 6  Comparison against human performance 
 Table 6, above, contains a direct comparison of answers on the test between our 
CoreGeo algorithm, the Lovett et al. model, and human results, at a confidence level of 
95%. The human performance data was derived by the authors from data given in a chart 
in Lovett et al. (2008).  
 As we were interested in comparing not just the answers between models on a correct 
versus incorrect stance, but rather on a confidence basis, we imposed a system of 
interpretation upon the human data. To that end, we interpreted the human data as correct 
if the accuracy value (as given in the chart in Lovett et al. 2008) fell above 0.6 (about 1 
standard deviation of confidence), ambiguous if between 0.6 and 0.2 (approximately 
random), and incorrect if below 0.2.  In this manner, we established that the American 
data provided 43 total correct answers with 12 ambiguously correct, while the 
Mundurukú data provided 40 total correct answers with 10 ambiguously correct. 
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 As can be seen in Table 6, in the cases where the human results (either American or 
Mundurukú) are interpreted as ambiguous, our CoreGeo algorithm also generally but not 
consistently responds ambiguously (e.g. problems #13, #19, #21, #25, #32, and #33 are 
mutually ambiguous, but the rest are not).  
 As noted in the specific discussion of results above, the CoreGeo algorithm is less 
confident than human subjects on aspects of topology.  However, it is more confident 
than human subjects on those tests involving symmetry, transformations, and chirality.  
We believe that this is attributable to the specific nature of the fractal representation, in 
that the features derived from those representations and upon which analogical 
assessments made are essentially spatial transformations.  We direct the reader to the first 
appendix for a brief description of the fractal representation. 
 
Conclusions 
 
The origin of cognitive abilities, such as geometric abilities, is a complex and open issue. 
Dehaene et al.’s test suggests humans may have a core set of geometric abilities 
irrespective of culture, language or education. In this paper, we exploit the analogical 
nature of the problems on Dehaene et al.’s test to develop a new computational model of 
geometric analogies which, like all theories of analogy more generally, strongly relies on 
the notion of similarity, and, in particular, on visual similarity.   

Our computational model of geometric analogies uses fractal representations. This has 
the advantage that the reasoner can work at multiple levels of spatial resolution, zooming 
in and out as needed, because the geometric figures considered at those resolution levels 
are similar to one another.   Thus, if at a given level of resolution, an answer is 
ambiguous because the confidence in the answer is about the same as the confidence in 
another answer, then our reasoner can shift strategies, changing the level of abstraction to 
find a spatial resolution level at which an answer may emerge unambiguously. 

We view perception as playing an important role in cognition. Further, we view the 
fractal representation as a knowledge representation. In earlier work, we have developed 
a computational theory of fractal analogical reasoning (FAR).  We have also used FAR 
for a variety of tasks such as geometric analogies on intelligence tests, visual oddity tests, 
as well as perception in simulated reactive agents.  

In this paper, we showed how the CoreGeo algorithm, based on FAR’s ABR* 
algorithm, can address problems on the Dehaene et al.’s test. Both humans - American as 
well as Mundurukú - and CoreGeo compute many answers unambiguously and others 
with some ambiguity. Our algorithm is parsimonious in that it doesn't need additional 
mechanisms, representations, or components.  

More importantly to us, our CoreGeo computational model performs at about the level 
of humans, both educated Americans and the Mundurukú tribe. Of course, it is much too 
early to suggest that computational model is also a cognitive model of core geometric 
abilities. At this stage of development, our work simply shows that CoreGeo can address 
the Dehaene et al.’s test at about the level of human performance, that it enables 
calculation of confidence values in answer, and that it allows automatic adjustment of the 
level of resolution.  

The characteristics of the CoreGeo model results in some predictions about human 
performance. As Table 6 indicates, humans as well as CoreGeo have difficulty finding 
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answers to some problems on the Dehaene's test because of the ambiguity of the answers 
to the problems. Based on our work with CoreGeo, we predict that humans have 
difficulty choosing answers on specific problems on the Dehaene’s test (the ones on 
which CoreGeo finds ambiguous answers), and that when they do have such difficulties, 
they change the level of resolution/abstraction at which they analyze the given problem. 
We hope to design experiments that can test these predictions. 

Current theories of analogy approach regard the process of analogy-making as if it 
were a singular process based upon three core ideas: that analogy depends upon the 
capture of not just features but the relationships between objects or concepts (Holyoak & 
Thagard, 1996); that propositional representations (and not imagistic representations) are 
crucial for the concise expression of those transformations and relationships;  and that the 
fit of an analogy depends upon the alignment between the structure of representations, 
not necessarily the content of knowledge represented (Gentner, 1983). In contrast, our 
research group has a long history of building an alternative account of analogy (Goel, 
1997).  In our view, analogy is composed of multiple processes, some of which are based 
on just features (e.g. Kunda et al., 2013) and others capturing relationships (e.g. Yaner & 
Goel, 2008), some more focused on propositional representations (Davies et al., 2009) 
and others on imagistic representations (e.g. Kunda et al., 2013), and some intent on 
exploiting the organization of knowledge into abstraction hierarchies (e.g. Goel & Bhatta, 
2004; Davies et al., 2009) while others examine the content of knowledge at specific 
abstraction levels (e.g. McGreggor et al. 2012).  This paper shows that the fractal 
representation as an imagistic representation and the ABR* algorithm as a featural 
analogical process offer an example of a content-based theory of analogy. 
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Appendix 1 Fractal Representation 
 
We have previously published the details of the fractal representation (e.g. McGreggor et 
al. 2011; McGreggor & Goel, 2012). We include here a brief review of the 
representation, however. 

The mathematical derivation of fractal image representation expressly depends upon 
the notion of real world images, i.e. images that are two dimensional and continuous 
(Barnsley & Hurd, 1992). A key observation is that all naturally occurring images appear 
to have similar, repeating patterns. Another observation is that no matter how closely one 
examines the real world, one may find instances of similar structures and repeating 
patterns. These observations suggest describing images in terms that capture the observed 
similarity and repetition alone, without regard to shape or traditional graphical elements.    
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Computationally, determining fractal representation of an image requires the use of the 
fractal encoding algorithm. For a target image D and a source image S, the algorithm 
seeks to discover a set of transformations T.  

Algorithm 2. Fractal Encoding of D from S  

The fractal encoding of the transformation from a source image S into a destination 
image D is tightly coupled with the partitioning scheme P of the destination image D, 
which may be achieved through a variety of methods. In our present implementation, we 
merely choose to subdivide D in a regular, gridded fashion. Note that the cardinality of 
the resulting set T is determined solely by the partitioning P. In this fashion, the fractal 
representation is derived. 

The analogical relationship between source and destination images may be seen as 
mutual; that is, the source is to the destination as the destination is to the source.  
However, the fractal representation is decidedly one-way (e.g. from the source to the 
destination).  To capture the bidirectional, mutual nature of the analogy between source 
and destination, we introduced the notion of a mutual fractal representation. Let us label 
the representation of the fractal transformation from image A to image B as TAB.  
Correspondingly, we would label the inverse representation as TBA. We shall define the 
mutual analogical relationship between A and B by the symbol MAB, given by this 
equation: MAB = TAB ∗ TBA 

Appendix 2 Similarity Distribution 
In McGreggor and Goel (2012), we developed the notion of the distribution of similarity.  
In that work, we determined a score for a grouping of images G, but needed a way to 
assign individual scores for the participating images.   

To determine the image scoring, we distribute the similarity score of the grouping 
equally among the participating images.  For each of the images, a score is generated 
which is proportional to its participation in the similarity of the grouping’s similarity 
vectors.  If an image is one of the two images in a pairing, as an example, then the 
image’s similarity score receives one half of the pairing’s calculated similarity score. 
 

First, systematically partition D into a set of smaller images, such that D = {d1, d2, … }.  

For each image di:  

· Examine the entire source image S for an equivalent image fragment si such that an affine 
transformation of si will likely result in di.  

· Collect all such transforms into a set of candidates C. 
· Select from the set C that transform which most minimally achieves its work, according to 

some predetermined metric. 
· Let Ti be the representation of the chosen transformation associated with di. 

The set T = {T1, T2, T3, … } is the fractal encoding of the image D. 
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 Algorithm 3. Similarity distribution  
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