Twelfth Annual Advancesin Cognitive Systems Poster Collection (2025) 132-154

A View of the Restaurant Script Through the Lens of
Hierarchical Planning

Jamie C Macbeth' JMACBETH @ SMITH.EDU
Mark Roberts? MARK.C.ROBERTS20.CIV@US.NAVY.MIL
Boming Zhang? BOMINGZHANG @UMASS.EDU
Sharmin Badhan* SBADHAN213036 @MSCSE.UIU.AC.BD
Molly Neu! AMALIA.R.NEU@GMAIL.COM
Tanush Garg® TANUSH_GARG @BROWN.EDU
Yining Hua® YININGHUA @ G.HARVARD.EDU
Manushaqe Muco” MANJOLA @MIT.EDU
Mackie Zhou® MACKIEZHOU @MICROSOFT.COM

1Department of Computer Science, Smith College, 100 Green St., Northampton, MA 01063, USA
2Navy Center for Applied Research in Artificial intelligence, The U.S. Naval Research Laboratory,
Washington, DC, 20375, USA

3University of Massachusetts, Amherst, MA, 01003, USA

4United International University, Madani Avenue, Badda, Dhaka 1212, 09604, Bangladesh
5Brown University, Providence, RI, 02912, USA

6Harvard University, Cambridge, MA, 02138, USA

"MIT, Cambridge, MA, 02139, USA

8Microsoft, Redmond, WA, 98052, USA

Abstract

The flexible nature of human cognition and of the structures it uses is well known, as is the difficulty
of building cognitive systems that exhibit transfer and use the same structures for radically different
tasks. In this paper, we perform a close examination of Schank-Abelsonian scripts, picking apart
the goal- and plan- oriented nature of low-level acts and high-level reasoning inherent in them. We
then view scripts through the lens of hierarchical planning systems and construct the well-known
restaurant script as a hierarchical goal network planning domain. These are evidence in support
of a claim that some, if not all, scripts are deeply hierarchical and are plan- and goal-oriented.
The continuum that results from this representational unification may provide flexible knowledge
structures which may be reused across a broad variety of tasks in language understanding, planning,
and tasks requiring both, such as explanation and plan-based understanding of natural language.

Thiswork islicensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

J. C. MACBETH, ET AL.

1. Introduction

Despite the impressive engineering of recent machine learning models to address some forms of
natural language communication, there remains a need to study flexible and reusable cognitive rep-
resentations. The flexible nature of human cognition and of the structures it uses is well known, as
is the difficulty of building cognitive systems that exhibit transfer and use the same structures for
radically different tasks. The astounding discrepancy between the fluid, human-like output of large
language models, the mainstream artificial intelligence systems at the time of this writing, and their
poor performance on simple reasoning and planning problems (e.g., Valmeekam et al., 2024) could
be attributed to representational issues.

Scripts are commonsense knowledge structures representing frequently-encountered situations
which were originally used in story understanding systems (Schank & Abelson, 1977). Scripts
are frequently revisited as a cognitive representation worthy of investigation, in part because they
present an important alternative to logic and semantic networks for inference and reasoning. Al-
though their noted limitations are that they are overly rigid and lack composability and transfer-
ability, there were proposals which suggested that these limitations could be overcome with goal
and plan systems and processes. Unfortunately, these proposals were disconnected from work that
evolved into the modern era research on automated planning systems.

Scripts are planning-like to those familiar with automated planning systems and their typical
representations (e.g., PDDL (Haslum et al., 2019) is the de facto input language for deterministic
planners, though there are others). However, scripts are inherently hierarchical and object-centric,
emphasizing objects and roles. Recent advances in planning have standardized models for hierar-
chical planning (e.g., HDDL, Holler et al., 2020) but these languages have a strong assumption of a
logic-centered modeling perspective rather than an object-centric perspective.

This paper addresses the above limitations by (1) examining the nature of the original script
concept to uncover the kind of modeling that is needed and (2) encoding the restaurant script in
a planning language that natively supports modeling in Python. For task (1), we perform a close
examination of Schank-Abelsonian scripts, picking apart the goal- and plan- oriented nature of low-
level acts and high-level reasoning inherent in the hierarchical structures of the scripts. We explore
whether scripts have a hierarchical structure, and whether that hierarchy corresponds to goals and
planning. For task (2), we leverage a planning modeling language to encode scripts that extends
prior work in hierarchical goal networks (Shivashankar et al., 2012; Roberts et al., 2021).

We present our introspective findings and planning domain as evidence in support of a claim
that some, if not all, scripts are deeply hierarchical and are plan- and goal-oriented. After providing
some background (Section 2), the main contributions of this paper include:

* A description of an internal study where we examine the goal- and plan- structures of the
restaurant script. The study investigates how the different features and structures of scripts
may be combined with planning structures and systems to create combined flexible represen-
tations (Section 3).

* An encoding of the restaurant script in a planning language called OOMPA (Object-Oriented
Modeling for Planning and Acting) and an introduction to OOMPA. This version of the restau-
rant script appears to account for the goal and planning knowledge that human reasoners have
for restaurant situations (Section 4).

133

A VIEW OF THE RESTAURANT SCRIPT THROUGH THE LENS OF HIERARCHICAL PLANNING

EATING

_—

GOING TO BEING ORDERING PAYING —= LEAVING

RESTAURANT SEATED / /

GOING TO GETTING GETTING
A TABLE A MENU A CHECK

Figure 1. Lehnert static goal structure, from Lehnert (1975).

* A discussion of the challenges of aligning scripts with automated planning (Section 5).

Our contributions are initial steps towards a possible unification of script and plan representations to
form a continuum of goal-oriented knowledge structures. This unification may provide more flexible
knowledge structures which may be reused for a broad variety of tasks in language understanding,
planning, and tasks requiring both, such as explanation and plan-based understanding of natural
language. The work is also important in the ways that it relates automated planning tasks and
systems to human episodic memory and explicit memory, and more broadly to human cognition. If
one of the main critiques of scripts is that they are too rigid, then the flexibility of scripts and their
components is achieved by leveraging the flexibility of the proposed planning model.

1.1 Running Example: The Restaurant Script (Schank & Abelson, 1977)

To describe the background and approach, we leverage the Restaurant script, which we will de-
scribe at an abstract level here. The description of scripts in Schank & Abelson (1977) divides the
restaurant script into four scenes: Scene 1: Entering, in which the patron enters the restaurant, finds
a place to sit, and sits; Scene 2: Ordering, in which the patron obtains a menu, chooses an item,
and places an order with their server; Scene 3: Eating, in which the server delivers the item for the
patron to eat; and Scene 4: Exiting, in which the server provides a check to the patron, and the pa-
tron pays, leaves a tip, and exits the restaurant. Each scene could have multiple sequences of causal
chains of acts and events called subscenes, representing multiple ways of completing the activity.
A representation of the goals in this script, provided by Lehnert (1975), are shown in Figure 1.
We examine this further in Section 3 after discussing some necessary background and related work.

2. Background

We outline two areas of prior research that we build on: Scripts and the Script Applier Mechanism
(Section 2.1) and hierarchical planning (Section 2.2). Before we proceed, we clarify our usage tasks,
activities, and goals. All three are equivalent because they can be converted to each other in polyno-
mial time. In general, a goal is a boolean or numeric condition that evaluates to true when achieved.

134

J. C. MACBETH, ET AL.

For example, patron.table needs to non-nil to be achieved while patron.money >= 50 com-
pares the value of the patrons money against a concrete value. A task or an activity might achieve a
goal, linked with a condition. For example, the eat ing activity could achieve patron.is_sated.
The graph of Figure 1 specifies activities, despite being labeled a goal structure by Lehnert, and
can be converted into goals: going to restaurant — patron.location == restaurant,
being seated — patron.table = tablel, and so on.

2.1 Scripts and SAM

Originally, scripts contained “causal chain” sequences of events, acts, and state changes that, in
theory, reflect the human capability of “filling in the blank™ during story understanding processes
(Schank & Abelson, 1977). They contain much more structure than just the graph, but we will
refer to the script as the composition of all the details. The first implementation of a script-based
understander, the Script Applier Mechanism (SAM, Cullingford, 1977), was a symbolic Al system
which applied scripts to the understanding of natural language narratives from a variety of sources.

In SAM, scripts are represented as sequences of events and acts in the Conceptual Dependency
(CD) language-free meaning representation system (Schank, 1975) with script variables occupying
role positions (e.g., ACTOR or OBJECT) in the script. SAM analyzes a text into CD form, matches
these forms to the script, and binds the variables to people, objects, and places encountered in
the story. SAM then instantiates a story representation consisting of the script structures, both
those that matched to events in the story and those which did not, with variables replaced by their
values, allowing SAM to instantiate implied events. SAM could compose summaries in English,
Chinese, and Spanish and could answer questions about the texts as a way to demonstrate its context-
dependent common-sense knowledge of social interactions and human affairs (Lehnert, 1975).

The scenes and events described by Schank & Abelson (1977) are for a particular track in
the restaurant script that represents a style of restaurant dining called the “Coffee Shop Track”.
Other script tracks corresponded to manifestations of the social situation which differed slightly
(for example, fast-food restaurant dining would occupy a separate track of the script).

Scenes in SAM had a main conceptualization (maincon), which was the most important or
crucial act or event of the scene. Separately, each script had a script-level maincon. The script
applier used maincons to generate its own summaries of stories that it understood by generating
natural language from the maincons of each script scene (Cullingford, 1977). In Section 3, we will
examine how maincons play a role in setting the expectations, and thus, the goals, of the script.

SAM could also answer some wuy questions which explained the goal-oriented behaviors of
story actors. To answer these kinds of questions, SAM used a hierarchical static goal graph as
shown in Figure 1. The graph consists of scriptgoals and a set of subgoals. The highest-level goal
of the restaurant script was eating, while being seated and ordering were subgoals of eating. A
question about the goal of an action at a particular node was provided by traversing the edge to the
next higher node in the hierarchy. For example, if the question Wuy pi>p Mary Get A MENU 1S asked,
SAM followed the edge to “ordering” to provide the answer ‘because she was ordering’. This worked
for questions regarding the actions of the restaurant customer, but was brittle in the face of “weird”,
non-script based unexpected occurrences in the story (Lehnert, 1975).

135

A VIEW OF THE RESTAURANT SCRIPT THROUGH THE LENS OF HIERARCHICAL PLANNING

Schank & Abelson (1977) wrote “there is a fine line between the point where scripts leave off
and plans begin. In a sense it is an unimportant distinction” (page 77). Schank & Abelson proposed
separate structures to represent goals and plans (Schank & Abelson, 1977) which were implemented
in the Plan Applier Mechanism (Wilensky, 1983). However, PAM did not integrate the capabilities
of SAM with respect to understanding highly stereotypical situations handled well by scripts. Later
work acknowledged “the line between scripts and plans seemed fuzzy” and focused on abstractions
for generalization and learning, building so-called “sketchy scripts” which admittedly “contain less
information” (Schank, 1982). This paper seeks to overcome some of these limitations by com-
bining plan-oriented representations with script-oriented representations, allowing a continuum of
abstractions with reusable knowledge.

2.2 Hierarchical Planning

Most automated planning systems perform forward simulation of actions to search for a reachable
goal condition. In automated planning, the world (called a domain) is represented as an implicit state
transition system (Ghallab et al., 2025). The domain describes object types with their attributes and
relationships, which are often modeled using predicates—following from first-order logic. Instead,
we represent them as state-variables, which are more programming like. For example, suppose the
patron pat of a restaurant is assigned the server sam. PDDL represents this as (server pat sam)
read as the server of pat is sam. As a state variable, it is pat.server == sam. The two
representations are expressively equivalent and can be converted to each other in polynomial time
(Ghallab et al., 2025), but the state-variable representation is much easier for most programmers.

Actions are functions that modify attributes or relations. For example, sitting at a table would
result in the patron being assigned a table and its server as well as the table being occupied. Together
these attributes, relations, and actions describe the implicit state transition system. The transition
system is often too large to fit in memory, so techniques such as search are used to find a solution.

A hierarchical planning system (Nau et al., 1999) adds domain knowledge, in the form of
recipes, to improve search efficiency. Hierarchical planners are provably more expressive than
classical planning (Erol et al., 1994). In contrast to classical planning systems, which construct a
plan from the initial state to the goal state through simple state-space search, hierarchical planning
systems solve the problem by recursively breaking it down into intermediate steps to determine what
actions an intelligent agent, robot, or other autonomous systems should take to meet its goals in the
real world. Decomposition is done through the use of methods. A hierarchical problem description
consists of the domain, including methods, the initial state, and the desired goal condition.

Hierarchical Task Network (HTN) planning systems such as the Simple Hierarchical Ordered
Planner (SHOP) planning system (Erol et al., 1994; Nau et al., 1999, 2003) are often used for ap-
plications where fast planning is desired and domain-dependent knowledge can make the planning
process more efficient. A newer variant of hierarchical planning, called Hierarchical Goal Networks
(HGNSs, Shivashankar et al., 2012, 2013) decomposes goals. Formally, HTNs and HGNs are equiva-
lent (Alford et al., 2016). Practically, HGNs are easier to integrate with classical planning heuristics
and planners, which is important if the methods are incomplete.

136

J. C. MACBETH, ET AL.

3. Goal-Oriented Thinking in Scripts

To understand how to model scripts with planning, we present introspective evidence for goals
linked to the restaurant script. We performed an analysis of our structured discussions about activi-
ties in restaurants and the plan-like behaviors of those activities. The analysis informs the construc-
tion of the hierarchical goal network planning domain discussed in Section 4. In general, we were
able to associate each act in the restaurant script with a goal of some kind, even for concrete acts.
In searching for patterns, we uncovered elements of a “bottom-up” construction of a goal network
for the script, and found a strong link between subgoals and maincons.

Methodology. To examine the plans and goals associated with scripts, we discussed the goal orien-
tation of acts within script structures. We chose the restaurant script because it is well known and
has a full CD description, divided into four scenes (Schank & Abelson, 1977).

Table 1 shows our English realizations of the 33 CD acts in Schank & Abelson’s (1977) detailed
description of the restaurant script. This conversion alleviated the need for familiarity with CD
structures. In creating the English realizations, we had to include descriptions of the roles for
clarity. For example, the “F-Food” role was “the food item that the customer ordered.”

We constructed a questionnaire with two types of questions: activity goal or scene maincon.
33 questions ask about the ultimate goals and purposes of each act. We constructed these by turn-
ing the English realizations into wuy questions. For example, THE CUSTOMER LOOKS AT THE TABLES Was
transformed to WHY pOES THE cUSTOMER LOOK AT THE TABLEs? Four questions explored the scene maincon.
These questions listed all acts in a scene and asked, for each scene, wHICH Is THE PRINCIPAL OR MOST
mmporTANT AcT? We allowed multiple answers, and for shorter scenes, particularly “Scene 3: Eating”,
which only contains three acts, we included a few acts from neighboring scenes in the list of acts to
choose from. We randomized the order of the questions to minimize ordering effects.

We individually answered the questionnaire; each person had varying levels of familiarity with
scripts and with the restaurant script in particular. We shared our questionnaire answers with each
other and discussed them, analyzing our responses to the questionnaire and using them to make
findings. The sections that follow include quotations from our answers and discussions. QUEsTIONS

ARE IN THIS STYLE. ‘Answers are in this style.’

3.1 Goals, Subgoals, and Scriptgoals

First, we generally found that we were all able to construct answers to these questions, although the
wHy questions that we asked ourselves in the questionnaire were, at times, awkward because they
attempted to access goal-oriented knowledge, which is rarely expressed so directly. We were able to
associate each act in the restaurant script with a goal of some kind, even for very concrete acts. For
example, when we asked ourselves Wuy poEs THE cUSTOMER Go To A TaBLE? most of us said ‘fo sir at it’
or mentioned sitting. This would align with Schank’s “redefinition” of scripts (Schank & Abelson,
1977) in his later writing on Dynamic Memory (Schank, 1982) where he writes, “A scene defines a
setting, an instrumental goal, and actions that take place in that setting in service of that goal.”

We hypothesized that if our restaurant script knowledge was a kind of hierarchical network,
concrete subgoals might appear in service of more abstract goals. We first thought that the goals of
acts might conform to Lehnert’s hierarchical graph (Figure 1). In this model, the goals of acts within

137

A VIEW OF THE RESTAURANT SCRIPT THROUGH THE LENS OF HIERARCHICAL PLANNING

Table 1. Scenes of the restaurant script (Schank & Abelson, 1977), the Conceptual Dependency (CD) rep-
resentations of the events that characterize the scene, and English descriptions of the events. Duplicates of
events which appeared more than once in different scenes (e.g. “The waiter goes to the customer’s table”)

have been left out, along with path information.

Scene CD English
S PTRANS S into restaurant The customer goes into a restaurant
S ATTEND eyes to tables The customer looks at the tables
Entering S MBUILD where to sit The customer decides where to sit down.

S PTRANS S to table The customer goes to a table.
S MOVE S to sitting position The customer sits down at a table.
S PTRANS menu to S The customer picks up the menu
S MTRANS ‘need menu’ to W The customer tells the waiter that they need a menu.
W PTRANS W to menu The waiter goes over to where the menus are.
W PTRANS W to table The waiter goes to the customer’s table
W ATRANS menu to S The waiter gives a menu to the customer
S MTRANS food list to CP(S) The customer reads the menu
S MBUILD choice of F The customer chooses a food item.

Ordering S MTRANS signal to W The customer signals the waiter.
S MTRANS ‘I want F’ to W The customer tells waiter the food item that they want.
W PTRANS W to C The waiter goes to the cook.
W MTRANS (ATRANS F) to C The waiter tells the cook to give them the food item that the customer ordered.
C MTRANS ‘noF’ to W The cook tells the waiter that F is not available
W MTRANS 'noF’ to S The waiter tells the customer F is not available
C DO (prepare F script) The cook prepares the food item that the customer ordered.
C ATRANS Fto W The cook gives the food item that the customer ordered to the waiter.

Eating W ATRANS Fto S The waiter gives the food item that the customer ordered to the customer.
S INGEST F The customer eats the food item that they ordered.
S MTRANS to W The customer asks the waiter for the check.

(W ATRANS check to S)

W MOVE (write check) The waiter writes or prints a check for the customer.

Exiting W ATRANS .check toS The waiter gives the customer the check.
S ATRANS tip to W The customer gives the waiter a tip.

S PTRANS Sto M
S ATRANS money to M
S PTRANS S to out of restaurant

The customer goes to the cashier.
The customer gives money to the cashier.
The customer leaves the restaurant.

scenes (Table 1) would be the scene subgoals—being seated, ordering, and paying. We collectively
thought that this was frequently the case.
According to this model, the goal of a scene subgoal act would be a more abstract goal, which

Lehnert termed a scriptgoal. Figure 1 has “eating” as the scriptgoal of the scene subgoal acts
such as “going to restaurant,” “being seated,” or “ordering.” When asked Wuy poEs THE CUSTOMER GO
INTO THE RESTAURANT, We said ‘fo eat’ or ‘to eat a meal,” referencing an abstract scriptgoal. However,
occasionally a different act was elevated to a scriptgoal. For ordering, Why DOES THE CUSTOMER TELL THE
SERVER THE FOOD ITEM THAT THEY WANT? focused on having the item ‘prepared,” ‘delivered,” or ‘brought’ by
the server; only one of us focused on eating, the presumed answer based on Lehnert’s diagram.
Further evidence of a goal hierarchy were answers to questions with multiple goals in the hier-
archy. Our answers mentioned both the scene subgoals and the abstract goals. For example, in the
Entering scene our answers t0 WHyY DOES THE CUSTOMER GO TO A TABLE? mentioned sitting and the purpose
of eating: ‘o sit down and eat’ or ‘To order and eat at the table.” In the Exiting scene, for Way poEs

138

J. C. MACBETH, ET AL.

THE CUSTOMER ASK THE SERVER FOR THE CHECK? OI' WHY DOES THE CUSTOMER GO TO THE CASHIER? INany answers
mentioned multiple goals: ‘the customer wants to pay for their meal and leave.’

Sometimes subgoals other than the expected scene subgoals appeared. In the Entering scene,
for WHY DOES THE CUSTOMER LOOK AROUND AT THE TABLES IN THE RESTAURANT? some answered ‘being seated’
as might be expected. But we also stated ‘to select,” ‘to decide,” ‘to pick,” and to ‘find a good place to
sit,” referring to the act of choosing where to sit before sitting. Similarly, in the ordering scene, to
WHY DOES THE CUSTOMER TELL THE SERVER THAT THEY NEED A MENU?, WHY DOES THE CUSTOMER PICK UP THE MENU?, OT
WHY DOES THE CUSTOMER READ THE MENU? answers included ‘to decide what to order,” ‘to select,’ ‘to figure out
what they want,” etc. Thus, there may be more levels to the hierarchy than originally expected.

In the Eating scene, the only act by the customer is eating. We largely discussed satisfying
hunger and appetite as the goals related to the eating act, along with the positive taste sensation
being a goal: ‘they think the food is tasty so they want to eat it.” We also talked about the original
intention or reason for going to the restaurant: ‘they ... came to the restaurant with the intention of eating
the food that they ordered,” ‘because they came to the restaurant to eat,” ‘to fulfill the reason they went to the
restaurant for” This confirms that eating is the most abstract goal, or scriptgoal, or at least it is an
abstract goal for the customer.

3.2 Server and Cook Acts

Of the 33 acts in the restaurant script diagram provided by Schank & Abelson (1977), 17 of the
acts are by the customer, but 13 of the acts are by the waiter, and three are by the cook. The goals
of server acts often center on the server and cook assisting the customer. For Wuy poEs THE SERVER
GIVE THE FOOD ITEM THAT THE CUSTOMER ORDERED TO THE CUSTOMER? Imany of us talked about the customer’s
ultimate goal of wanting to eat or enjoy the food: ‘The customer can enjoy the meal’, ‘so the customer
can eat it’. But we also discussed the server’s obligation to perform this act as part of their job:
‘That’s part of what they are paid to do’.

But in other cases, it was clear that the server had their own hierarchical goals and that the goals
of their acts were abstract subgoals for other server acts. FOr Why poEs THE SERVER GO OVER TO WHERE THE
MENus ARE? We mainly thought it was ‘fo ger a menu to give to the customer’. When we asked wuy poEks
THE SERVER GO TO THE CoOK? among other answers, we said, ‘to pick up food’.

3.3 Are Maincons Goals?

As a reminder, a maincon is the main conceptualization—the most important or crucial act or event
of a scene or of a script. Although the names of scenes, “Entering,” “Ordering,” “Eating,” and “Ex-
iting,” lead to natural hypotheses about their maincons, we wanted to make our own determinations.
The questionnaire asked about the most important act in the Ordering scene, to which the majority
said ‘The customer tells the server the food item that they want’. For many of us, the customer eating
the food item that they ordered was a maincon of “Eating”. One of us wrote: ‘To me this is the most
important because it is the primary reason the customer entered the restaurant’. For the Exiting scene, we
overwhelmingly chose “the customer gives money to the cashier” as the most important act, with
one of us stating ‘this is the most important ... because the customer has eaten a meal and must pay before
leaving’. We found that generally, the maincons of scenes were identical to the subgoals of scenes.

139

A VIEW OF THE RESTAURANT SCRIPT THROUGH THE LENS OF HIERARCHICAL PLANNING

However, there were exceptions to this that prompted us to reimagine the structure of the script.
In our discussions of “Entering”, we found “the customer goes into a restaurant” to be a more
important act than “the customer sits down at a table”. Entering the restaurant was seen as most
important ‘because the customer was probably hungry and this is the first commitment they made to eating
in a restaurant. They could have eaten food in other ways (e.g., getting food at a grocery store or from their
home).” For Eating, many believed that the cook preparing the food item, or the server giving the
food item to the customer were crucial or even more important than the act of eating. One of us
wrote ‘food being delivered ... was the main point of the visit to the restaurant.” This is a case where the
most abstract maincon mismatched what we discussed as most abstract goal of the script.

We discussed the way that the “transaction” between the restaurant and the patron, in which the
patron pays and the restaurant prepares and delivers food, was more important than the act of eating,
particularly when seen from the server’s perspective. We also talked about “tracks” of the restaurant
script for take-out restaurants and the possibility that the patron might not actually consume some or
all of the food. Furthermore, having “completing the transaction” as the high-level goal also allows
for the payment that occurs in the “Exiting” scene to be in service of that goal. We also noticed
that, if we redefined the script scene structure taking into consideration Lehnert’s graph (Figure 1),
then the act of entering the restaurant could be in a separate “Entering” scene, and the goal of sitting
down would correspond to the maincon of a new “Getting Seated” scene.

4. A Script-Based Planning Domain

To illustrate the possibility of a joint script and planning representation, we represented the restau-
rant script as a planning domain. The situation is very much unlike that in the script applier mecha-
nism, which represents the world only in the form of a causal chain of events, and the existence of
certain actors, objects, and settings as script variables.

4.1 The OOMPA Modeling language

We construct the domain as a hierarchical goal network! and developed in OOMPA (Object-Oriented
Modeling for Planning and Acting), which is a toolkit to support modeling planning domains in a
Pythonic and object-oriented manner. OOMPA blends the principles of ActorSim (Roberts et al.,
2021; Johnson et al., 2016) with the ease and simplicity of the GTPyhop?>. OOMPA’s design makes
writing Python planning models much more straightforward by: (1) leveraging the typing and in-
trospection modules from Python 3.13, the latest stable release of Python; (2) supporting object-
oriented modeling patterns in contrast to the usual declarative logic representations typical in auto-
mated planning languages; and (3) providing Python annotations (similar to the Python property)
that allow programmers to annotate objects to link them to a planning system. Together, these design
choices should enable anyone who knows Python to write planning models.

Below, we relate OOMPA representation with elements of the restaurant script, specifically the
Patron; a full listing is provided in Appendix A. OOMPA organizes information using standard
Python classes annotated with StateProperties, Actions, and Methods, described next. We changed

1. We provide examples in this section and Appendix A, but will release the full code when published.
2. https://github.com/dananau/GTPyhop

140

1
2
3
4
5
6
7
8
9

10
11
12
13

33

J. C. MACBETH, ET AL.

class Patron(Person, CreatesNewObjects, HasOompaActions, HasOompaMethods) :
table: Table | None = StatePropertyFactory (None)
server: Server | None = StatePropertyFactory (None)

@OompaAction # declares action -———--——-------"-"-""-"""""""""""""——""————
def sit(self, table: Table): pass

@sit.precondition # condition for this action to be applicable
def sit (self, table: Table): return self.table.equals (None)

@sit.effect # change in state from applying this action to state
def sit(self, table: Table):
return AndEffect (self.table.assigned(table), # Patron seated at table
self.server.assigned(table.server), # server assigned
table.occupied.assigned(True)) # table occupied

@OompaMethod # declares method ————---------"-"""""-""""-"---- " ———
def m_ordering(self, table: Table) -> GoalMethod: pass

@m_ordering.head # the condition the method matches; determines relevance
def m_ordering(self, table: Table) -> Condition:
return AndCondition(self.desired_order.not_equals (None),
self.desired_order.status.equals (ORDERED))

@m_ordering.precondition # condition for this method to be applicable
def m_ordering(self, table: Table) -> Condition:
return AndCondition(self.table.not_equals (None), # Patron seated
table.menu.not_equals (None), # Patron lacks menu
self.desired_order.equals (None),) # Patron lacks desired order

@m_ordering.body # change in hgn from applying this method to hgn
def m_ordering(self, table: Table) -> TOHGN:
return TOHGN(self.pickup_menu (), self.review_menu_for_special(),
self.request_server (), self.place_order())

Figure 2. A condensed version of the Patron class with the sit action and the order special method.

the names of roles from the original restaurant script to use phonetically matched starting conso-
nants. Instead of S as Customer, Pat is the Patron; instead of W as Waiter, Sam is the Server; instead
of C as Cook, Chris is the Cook.

Objects in OOMPA are standard Python classes, as shown in the condensed version of the Patron
class in Figure 2 (for the full domain, see Section A). The Patron class (Line 1) inherits from the
Person class, which is only a type, as well as some OOMPA declarations that this class creates new
objects, has actions, and has methods. StateProperties are managed attributes that are declared using
a StatePropertyFactory. The Patron lists two StateProperties (Lines 2-3) of the table and the
server. A StateProperty works similarly to the Python property descriptor and allows OOMPA
to infer the value type as well as automatically construct the state.

State in OOMPA is represented as a dictionary of dictionaries, as shown in Figure 3. Objects
like this are converted to the dictionary state by unpacking the attribute names for each object and
entering the value of the attribute. So a state is indexed by the attributes objects can take (e.g.,

141

o T Y I NI SR

[IS T N I VU SR

A VIEW OF THE RESTAURANT SCRIPT THROUGH THE LENS OF HIERARCHICAL PLANNING

s_0: 11 near_to: {’sam’: None}

check: {’sam’: None} 12 occupied: {’tablel’: False}

cost: {’omelette’: 12} 13 order: {’sam’: None}

desired_order: {’pat’: None} 14 ordered: {’chris’: None}

is_hungry: {’pat’: True} 15 prepared: {’chris’: []}

is_pleased: {'pat’: False} 16 server: {’pat’: None, ’'tablel’: sam}

items: {’menu_breakfast’: []} 17 special: {’menu_breakfast’: omelette}

menu: {’pat’: None, ’sam’: None, 18 status: {’omelette’: AVAILABLE}
"tablel’ : menu_breakfast} 19 table: {’pat’: None}

money: {’pat’: 50}

Figure 3. The initial state s, represented as a dictionary.

s_final: desired_order: {’pat’: ordered_omelette}
menu: {’pat’: menu_breakfast}
near_to: {’sam’: pat }
occupied: {’tablel’: True}
order: {’sam’: ordered_omelette}
server: {’pat’: sam, ’'tablel’: sam}
status: {’ordered_omelette’: ’'ORDERED’}

table: {’pat’: tablel}

Figure 4. The final state difference after applying (m_sit,m_ordering)

the table or server of the patron, the order being processed, whether the patron is pleased) and
the names of the objects. For example, to determine whether patron Pat is hungry in state sg one
retrieves sg [is_hungry] [pat].

Actions and Methods are declared using annotations (i.e., @ OompaAction and @ OompaMethod).
An action includes the parameters of the action, a precondition, and an effect. A patron can sit
(Lines 6-15) at the table if the table is currently assigned None. The effect of sit assigns table
to patron.table, table.server to patron.server, and True to table.occupied.

The ordering scene is represented in a method m_ordering (Lines 20-34), which matches the
condition for patron.desired_order to have a value with status ORDERED. Its precondition is
that these are not yet set; applying this method decomposes the goal into the sequence of actions

(pickup_menu, review_menu_for_special, request_server, place_order).

Solutions. A solution to problem is a plan, a sequence of actions that starts in the initial state sg and
achieves the goal condition, similar to how SAM applies a script to a story. An automated planner
constructs a solution by applying methods and actions. OOMPA implements a variation of the Goal
Decomposition Planner (Shivashankar et al., 2012).

In the restaurant domain, StateProperties represent the locations of roles and objects.
The StateProperty for is_hungry and is_pleased (not shown Figure 2 but listed in Sec-
tion A) are part of the entry conditions and results of the original restaurant script (Schank &
Abelson, 1977). Other entry and result conditions related to money are represented by cost—

142

J. C. MACBETH, ET AL.

the cost of menu items—and money, which indicates how much money the patron has. The
near_to property indicates the proximity of things. The location or possession of the menu is
designated menu; it is initially on the table. The customer orders the special menu item of the day,
the veggie_omelette. Let the StateProperty = desired_order (pat). For the goal
(z! = None A status (x) == ORDERED), GDP uses m—-sit and m—ordering and returns the
solution: sit (pat, tablel), pickup_menu(pat), review_menu_for_special (pat),
request_server (pat), and place_order (pat).

5. Discussion

Early conceptions of scripts focus on defining them as structures of episodic memory of personal ex-
perience consisting of causal chain sequences of acts and events which occurred at a particular time
and place (Schank & Abelson, 1977). Scripts pose structures based on personal experiences as an
alternative to logical formulations as a basis for thinking and reasoning. Schank & Abelson (1977)
counterpose scripts and episodic memory as “flat” sequential structures against semantic memory,
which represents general knowledge facts often organized around words and their meanings using
hierarchies of ontological class membership and property inheritance.

Our introspective discussions and hierarchical planning domain are evidence of the hierarchical
nature of scripts that exists alongside the sequential order implied by episodic memory. In fact,
we found (in Section 3) that the subgoals of scenes might extend to greater depths than previously
envisioned (e.g., choosing a place to sit as a subgoal of sitting down, or choosing a food item from
the menu as a subgoal to making an order). This view aligns with elements of the Script Applier
Mechanism implementations (Lehnert, 1975; Cullingford, 1977) and with later proposals by Schank
(1982) on abstraction and generalization in relation to scripts.

There is certainly goal-oriented thinking in the individual acts of scripts, but what kind of plan-
ning structure is a script as a whole? In Scripts, Plans, Goals, and Understanding, Schank &
Abelson (1977) wrote “the restaurant ... script is known to be a common means of implementing
a plan of action for getting fed” (page 49), “a routinized plan can become a script” (page 72), and
“plans are where scripts come from” (page 72). The key difference between script application and
planning would appear to be that scripts and script application can be successful in domains where
there is a strong level of expectation about what will happen, and little variation to the effectiveness
of stereotyped sequences of actions. If we consider a entirety of a script which contains its scene,
subscene, and track structures, and attempt to relate it to hierarchical planning, a script appears to
be most similar to a decomposition tree (also termed solution tree), which is the tree-like structure
created by the planner that includes subgoals and choices of methods at each stage.

When drawing further correspondences between the restaurant script and a hierarchical goal
network, we see that, although the scenes of the restaurant script as described by Schank & Abel-
son (1977) are not explicitly described as a decomposition of “having eaten in a restaurant”, as a
first pass, our planning domain does decompose the task into subgoals corresponding to the restau-
rant scenes. The methods m_entering, m_ordering, m_eating, and m_exiting would
roughly corresponding to the four scenes of the restaurant script. Also, for Cullingford (1977),
script scenes were allowed to have multiple “subscenes”, sequences of events and acts representing

143

A VIEW OF THE RESTAURANT SCRIPT THROUGH THE LENS OF HIERARCHICAL PLANNING

possible ways of accomplishing the activity. HGN methods are analogous to script subscenes in this
light as well, in that there may be multiple methods which are applicable in a particular state, with
the bodies of the methods containing low level actions for reaching a subgoal.

In a way very different from script scenes, however, each method expresses the goal state that is
meant to be reached by it, along with preconditions, the aspects of the state that must hold in order
for the method to be used. This restriction, typical of hierarchical planning, allows the planner to
select only methods that are applicable to the current state of the world; it allows methods to be
reused in similar situations.

In some similarity to methods in HGNs, the original description of the restaurant script (Schank
& Abelson, 1977) had pre- and post- conditions (named “Entry conditions” and “Results”). Ad-
ditionally, scripts in the Script Applier Mechanism were said to have a set of conceptualization
patterns called “headers” which “invoked” the script and applied it to a story (Cullingford, 1977).
However, in these early incarnations in the literature script structures had no mechanisms for es-
tablishing that the state of the world was appropriate for a particular scene to begin. Further, the
ordering of scenes was fixed, and there were no built-in mechanisms for the reuse of scenes. Later
Schank (1982) proposed memory organization packets (MOPs), high-level structures which allow
scenes to be reused and shared across different settings. Methods within a hierarchical planner could
be viewed as a concrete form of MOP implementation.

The Script Applier Mechanism used scripts for story understanding, but also for question an-
swering, summarization, and translation. Although natural language systems for interacting with
hierarchical planners exist, deepening the connections between scripts and planning domains as we
have demonstrated could improve these capabilities. Specifically, the low-level causal chains in
combination with maincons at the script and scene levels enable the generation of complex natural
language explanations of plans, of the planning domain’s structures, or of aspects of the planning
process, such as its success or failure.

6. Related Work

Our motivation is exploring hierarchical planning and story understanding, for which Scripts and
CD are central. Scripts—a kind of plan template—are widely applicable to problems resembling
plan generation or plan understanding, and a variety of research has applied automated planning
techniques to problems in these areas. We briefly mention some connections here and welcome
further pointers.

Cognitive Systems. Scripts and methods both encode what would be called procedural knowledge
in a cognitive system. Two systems bear the strongest overlap with the OOMPA encoding. SOAR
(Laird, 2012) is widely known for its universal subgoaling, a decomposition technique similar to
methods in OOMPA. Kirk & Laird (2019) used SOAR to learn games and the resulting models
share similarities to OOMPA. The PUG (Planning with Utilities and Goals) system of Langley et al.
(2016; 2024) has a similar focus on the primacy of goals for driving system behavior as OOMPA and
its predecessor ActorSim (Roberts et al., 2021). Macbeth & Roberts (2018) previously demonstrated
a connection between hierarchical planning and primitive decomposition.

144

J. C. MACBETH, ET AL.

PAIR. Story understanding bears resemblance to the literature on PAIR (plan, activity, intent, recog-
nition), since understanding requires matching a trace with possible plans (or scripts). Geib et al. uses
grammars to perform recognition (2011; 2015; 2018). Other approaches often adopt the compilation
paradigm by Ramirez & Geffner (2009) of recognition as planning. Similarly related is the work
that combines PAIR with analogy (e.g., Rabkina et al. (2022)).

Narrative. Riedl & Young (2010) used a plan-space planner—it searches the space of plans as
opposed to states—to generate narrative plots. A compilation approach by Haslum (2012) showed
how story generation can be compiled to a classical planning problem. An excellent survey of the
area by Cardona-Rivera et al. (2024) even advocates for the use of hierarchical planning to capture
typical procedures while increasing authorial control of temporally extended goals.

Dialog. Finally, researchers have studied how to use planning to generate dialog, often in the context
of social agents or social robotics. The closest work to ours is by Cavazza et al. (2002), which uses
an HTN planner to generate dynamic stories in the face of interruption. Porteus et al. (2009; 2011)
extended this work to include a user-interface and the ability to modify constraints. Petrick &
Foster (2013) built conversational social robots, where knowledge structures representing human
goals and plans make robotic interactions and the character actions in texts and interactive games
more believable and easier to understand.

7. Conclusion and Future Work

In this paper we carefully examined Schank & Abelson’s restaurant script, and used what we learned
about its hierarchical structures and the goal- and plan- oriented nature of its low-level acts to en-
code it in a hierarchical goal network planning domain. We demonstrated how reasoning that had
previously been associated with story understanding using the restaurant script could be posed as a
planning problem in our domain. This is an initial step towards unification of scripts with the knowl-
edge structures of hierarchical planning, which reflects the flexible structures that humans reuse in
performing the radically different tasks of planning and story understanding. Future work should
validate our discussion findings with a full human-subjects study of the relationship between goals,
tasks, and activities in various scripts. Furthermore, the OOMPA implementation could be more
general; future work should attempt to represent these problems using standard planning languages
like PDDL and extend what both representations are encoding.

Two other major issues interest us for future work in this area, which will be bolstered by efforts
to build a replica of the Script Applier Mechanism combined with a hierarchical planner. Firstly, the
original scripts contained mechanisms for dealing with what were termed “goal interference” situ-
ations in which there are minor, but somewhat expected, obstacles to the smoothest flow of events.
For example, arriving at a restaurant and observing that there are no available tables was considered
an interference with the goal of being seated (Lehnert, 1975). Implementations described in the
literature (Cullingford, 1977; Lehnert, 1975), had scripts which contained multiple alternative paths
which contain occurrences of goal interference and predicted an subsequent event which would be
either a resolution or consequence of the interference. For example, the restaurant customer may
eventually be seated at a table after a short wait.

145

A VIEW OF THE RESTAURANT SCRIPT THROUGH THE LENS OF HIERARCHICAL PLANNING

These aspects of scripts appear to relate strongly to certain constructs and concepts in the lit-
erature on automated planning and acting. Prior work recognizes the many ways in which the
expectations of a plan can diverge from reality while executing a plan, creating situations in which
the original plan must be adapted to a new situation (Fox et al., 2006). Further research is needed on
the connections between script interferences and concepts of plan repair, in which an existing plan
is adapted to a new context, and replanning, in which a new plan is generated completely from the
ground up. If we view a script as a plan, an interference in a script can be viewed as a replanning or
plan repair situation.

Secondly, we see characteristics of scripts which may suggest novel features for automated
planning systems. As we mentioned, scripts in the Script Applier Mechanism were supplied with
multiple paths in scenes that represented different ways that the main point or main goal of the
scene is accomplished. They also contained interference paths which were expectations for certain
kinds of things that could “go wrong” in a scene, and expected ways that the obstacle could be over-
come. The fact that these structures exist for scripts suggests a possible improvement to planning
systems in which they construct plans with built-in expectations of the ways in which the plan could
be thwarted, along with pre-built replans and plan repairs for the initial plan which handle these
expected obstacles; In the planning literature these are typically called plan repair (e.g., Fox et al.
(2006); Zaidins et al. (to appear)) and contingent planning (e.g., Hoffmann & Brafman (2005)).
Future work can explore this aspect of the representational unification of scripts and hierarchical
planning.

Acknowledgements

MR thanks NRL for funding this research.

References

Alford, R., Shivashankar, V., Roberts, M., Frank, J., & Aha, D. W. (2016). Hierarchical planning:
relating task and goal decomposition with task sharing. Proc. of IJCAI. New York, New York,
USA: AAAI Press.

Cardona-Rivera, R. E., Jhala, A., Porteous, J., & Young, R. M. (2024). The story so far on narrative
planning. Proc. of ICAPS, 34, 489-499.

Cavazza, M., Charles, F., & Mead, S. (2002). Character-based interactive storytelling. IEEE Intel-
ligent Systems (p. 17-24).

Cullingford, R. E. (1977). Script application: Computer understanding of newspaper stories. Doc-
toral dissertation, Yale University, New Haven, CT.

Erol, K., Hendler, J. A., & Nau, D. S. (1994). UMCP: a sound and complete procedure for hierar-
chical task-network planning. Proc. of AIPS (pp. 249-254). Chicago, IL: AAAI Press.

Fox, M., Gerevini, A., Long, D., & Serina, 1. (2006). Plan stability: Replanning versus plan repair.
Proc. of ICAPS (pp. 212-221). AAAL

Geib, C. (2015). Lexicalized reasoning. Proc. ACS. Atlanta, GA: The Cognitive Sys. Foundation.

146

J. C. MACBETH, ET AL.

Geib, C., & Goldman, R. (2011). Recognizing plans with loops represented in a lexicalized gram-
mar. Proc. of AAAI, 25, 958-963.

Geib, C. W., & Kantharaju, P. (2018). Learning combinatory categorial grammars for plan recogni-
tion. Proc. of AAAI (p. 3007-3014). New Orleans, Louisiana, USA: AAAI Press.

Ghallab, M., Nau, D., & Traverso, P. (2025). Acting, planning, and learning. Cambridge University
Press. Authors preprint at https://projects.laas.fr/planning/.

Haslum, P. (2012). Narrative planning: Compilations to classical planning. JAIR, 44, 383-395.

Haslum, P., Lipovetzky, N., Magazzeni, D., & Muise, C. (2019). An introduction to the planning
domain definition language. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Cham: Springer International Publishing.

Hoffmann, J., & Brafman, R. I. (2005). Contingent planning via heuristic forward search with
implicit belief states. Proc. of ICAPS.

Holler, D., Behnke, G., Bercher, P., Biundo, S., Fiorino, H., Pellier, D., & Alford, R. (2020).
Hddl: An extension to pddl for expressing hierarchical planning problems. Proc. of AAAI, 34,
9883-9891.

Johnson, B., Roberts, M., Apker, T., & Aha, D. W. (2016). Goal reasoning with information mea-
sures. Proc. of ACS. Evanstan, IL: Advances in Cognitive Systems.

Kirk, J. R., & Laird, J. E. (2019). Learning hierarchical symbolic representations to support inter-
active task learning and knowledge transfer. Proc. of IJCAI (p. 6095-6102). Macao, China.

Laird, J. (2012). The soar cognitive architecture. Cambridge, MA: MIT Press.

Langley, P., Barley, M., Meadows, B., Choi, D., & Katz, E. P. (2016). Goals, utilities, and mental
simulation in continuous planning. Proc. of ACS.

Langley, P., Barley, M., Meadows, B., Choi, D., & Katz, E. P. (2024). A unified cognitive architec-
ture for embodied intelligent agents. Proc. of ACS.

Lehnert, W. (1975). What makes SAM run? script based techniques for question answering. Proc.
Workshop on Theoretical Issues in NLP (p. 16-21). USA: Assoc. for Comp. Ling.

Macbeth, J. C., & Roberts, M. (2018). Exploring connections between primitive decomposition of
natural language and hierarchical planning. Proc. of ACS. Stanford, CA: Cog. Sys. Foundation.

Nau, D., Cao, Y., Lotem, A., & Mufioz-Avila, H. (1999). SHOP: Simple hierarchical ordered
planner. Proc. of IJCAI (pp. 968-973). Stockholm: Morgan Kaufmann Publishers, Inc.

Nau, D. S., Au, T.-C., llghami, O., Kuter, U., Murdock, J. W., Wu, D., & Yaman, F. (2003). SHOP2:
an HTN planning system. JAIR, 20, 379-404.

Petrick, R., & Foster, M. E. (2013). Planning for social interaction in a robot bartender domain.
Proc. of ICAPS. Rome: AAAI Press.

Porteous, J., & Cavazza, M. (2009). Controlling narrative generation with planning trajectories:
The role of constraints. Interactive Storytelling (p. 234-245). Berlin, Heidelberg: Springer.

Porteous, J., Teutenberg, J., Pizzi, D., & Cavazza, M. (2011). Visual programming of plan dynamics
using constraints and landmarks. Proc. of ICAPS (p. 186-193).

147

A VIEW OF THE RESTAURANT SCRIPT THROUGH THE LENS OF HIERARCHICAL PLANNING

Rabkina, I., Kantharaju, P., Wilson, J. R., Roberts, M., & Hiatt, L. M. (2022). Evaluation of goal
recognition systems on unreliable data and uninspectable agents. Frontiers in Al, 4.

Ramirez, M., & Geffner, H. (2009). Plan recognition as planning. Proc. of [JCAI.

Riedl, M. O., & Young, R. M. (2010). Narrative planning: Balancing plot and character. JAIR, 39,
217-268.

Roberts, M., Hiatt, L. M., Shetty, V., Brumback, B., Enochs, B., & Jampathom, P. (2021). Goal
lifecycle networks for robotics. Proc. of FLAIRS.

Schank, R. C. (1975). Conceptual information processing. New York, NY: Elsevier.

Schank, R. C. (1982). Dynamic memory: A theory of reminding and learning in computers and
people. New York: Cambridge University Press.

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals and understanding: An inquiry into
human knowledge structures. Mahwah, NJ: Lawrence Erlbaum Associates.

Shivashankar, V., Alford, R., Kuter, U., & Nau, D. S. (2013). The godel planning system: A more
perfect union of domain-independent and hierarchical planning. IJCAI (p. 2380-2386).

Shivashankar, V., Kuter, U., Nau, D., & Alford, R. (2012). A hierarchical goal-based formalism and
algorithm for single-agent planning. Proc. of AAMAS (pp. 981-988). Valencia, Spain.

Valmeekam, K., Marquez, M., Sreedharan, S., & Kambhampati, S. (2024). On the planning abilities
of large language models: a critical investigation. Proc. of NeurIPS. Red Hook, NY, USA.

Wilensky, R. (1983). Planning and understanding. London: Addison-Wesley.

Zaidins, P, Goldman, R. P., Kuter, U., Nau, D., & Roberts, M. (to appear). HTN plan repair

algorithms compared: Strengths and weaknesses of different methods. Proc. of ICAPS. Preprint
available at: https://arxiv.org/abs/2504.16209.

148

1
2
3
4
5
6
7
8
9

11

J. C. MACBETH, ET AL.

Appendix A. Condensed OOMPA Restaurant Domain

This listing shows the OOMPA implementation of the Restaurant script for the entering and ordering
scenes. It includes only the objects and roles necessary for those two scenes, though we have

implemented other scenes as well.

class RestaurantDomain (AbstractDomain) :
def _ init_ (self) -> None:
AbstractDomain.__init_ (self, "restaurant")
self.declare_types (Table, Menultem, Dish, Menu, Person, Server, Patron)

def test_create_simple_problem(self) :
problem = self.instantiate_problem()

sam = problem.sam = Server ("sam")

menu = problem.menu_breakfast = Menu("menu_breakfast")

special = problem.special = Menultem("veggie_omelette", 12)
menu.add_special (special)

problem.pat = Patron("pat")

problem.chris = Cook ("chris")

tablel = problem.tablel = Table("tablel", server=sam, menu=menu)
return problem

class Menultem(AbstractNamed, HasStateProperties):
class Status (StrEnum) :
AVAILABLE = auto()
UNAVAILABLE = auto()

def _ str_ (self):
return self.name

def _ repr_ (self):
return self._ str__ ()

cost: int = StatePropertyFactory ()
status: Status = StatePropertyFactory(Status.AVAILABLE)

def _ init_ (self, name, cost: int, status: Status = Status.AVAILABLE) :
super () .__init__ (name)
self.cost = cost
self.status = status

class Menu (AbstractNamed, HasStateProperties):

items: list[Menultem] = StatePropertyFactory (default_factory=list)
special: Menultem | None = StatePropertyFactory (None)
def _ init_ (self, name):

super () ._ init__ (name)

def add_item(self, item: Menultem) :
self.items.append(item)

def add_special (self, special: Menultem) :
self.special = special

149

A VIEW OF THE RESTAURANT SCRIPT THROUGH THE LENS OF HIERARCHICAL PLANNING

55 class Table (AbstractNamed, HasStateProperties):

56 server: Server = StatePropertyFactory()

57 occupied: bool = StatePropertyFactory (False)
58 menu: Menu | None = StatePropertyFactory (None)
59

60 def _ init__ (self, name, server: Server, menu: Menu, occupied=False):
61 super () ._ _init__ (name)

62 self.server = server

63 self.menu = menu

64 self.occupied = occupied

65

66 def init_add_menu(self, menu: Menu) :

67 self.menu = menu

68

69 def init_add_patron(self):

70 self.occupied = True

71
72
73 class OrderedItem(AbstractNamed, HasStateProperties):

74 class Status (StrEnum) :

75 UNORDERED = auto ()

76 SELECTED_BY_PATRON = auto ()

77 ORDERED = auto()

78 PREPARING = auto ()

79 PREPARED = auto ()

80 TOTALED = auto ()

81

82 PREFIX = "ordered_"

83

84 patron: Patron = StatePropertyFactory ()

85 item: Menultem = StatePropertyFactory ()

86 status: Status = StatePropertyFactory(Status.UNORDERED)
87 dish: Dish | None = StatePropertyFactory (None)

88

89 def _ _init__ (self, patron: Patron, item: Menultem):
90 super () ._ _init__ (OrderedItem.PREFIX + item.name)
91 self.patron = patron

92 self.item = item

93

94

95 class Person (AbstractNamed) :

96

97
98 class Server (Person, HasStateProperties):

99 near_to: Person | None = StatePropertyFactory (None)

100 order: OrderedItem | None = StatePropertyFactory (None)
101 menu: Menu | None = StatePropertyFactory (None)

102 check: Check | None = StatePropertyFactory (None)

103

104 def _ init_ (self, name):

105 AbstractNamed.__init__ (self, name)

106

107

108

109
110
111
112
113
114

150

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

J. C. MACBETH, ET AL.

(cont) class Server (Person, HasStateProperties):

== == == ——
region action move_near
@OompaAction
def move_near (self, person: Person):
pass

@move_near.precondition
def move_near (self, person: Person):
return AndCondition (
self.near_to.not_equals (person),

@move_near.effect
def move_near (self, person: Person):
return AndEffect (
self.near_to.assigned(person),

endregion action move_near

[[e

class Patron(Person, CreatesNewObjects, HasOompaMethods) :

problem: AbstractProblem

money: int = StatePropertyFactory(50)

is_hungry: bool = StatePropertyFactory (True)
is_pleased: bool = StatePropertyFactory (False)
table: Table | None = StatePropertyFactory (None)

server: Server | None = StatePropertyFactory (None)
menu: Menu | None = StatePropertyFactory (None)
desired_order: OrderedItem | None = StatePropertyFactory (None)
def _ init_ (self, name):
AbstractNamed._ _init_ (self, name)
e [—
region action sit
@OompaAction
def sit (self, table: Table):
pass

@sit.precondition
def sit (self, table: Table):
return self.table.equals (None)

@sit.effect
def sit(self, table: Table):
return AndEffect (
self.table.assigned (table),
self.server.assigned(table.server),
table.occupied.assigned (True),

endregion action sit

#

151

A VIEW OF THE RESTAURANT SCRIPT THROUGH THE LENS OF HIERARCHICAL PLANNING

175 [cont] class Patron (Person, CreatesNewObjects, HasOompaMethods) :

176

177 # == == == ===
178 # region action pickup_menu

179

180 # TODO might also need put_down_menu, but we’ll ignore it for now
181

182 @OompaAction

183 def pickup_menu(self):

184 pass

185

186 @pickup_menu.precondition

187 def pickup_menu(self):

188 return AndCondition (

189 self.table.menu.not_equals (None),

190 self.menu.equals (None),

191)

192

193 @pickup_menu.effect

194 def pickup_menu(self):

195 return AndEffect (

196 self.menu.assigned(self.table.menu),
197)

198

199 # endregion action pickup_menu

200 # == == == =
201

202

203 #

204 # region action review_menu

205

206 @OompaAction

207 def review_menu_for_special (self): pass

208

209 @review_menu_for_special.precondition

210 def review_menu_for_special (self):

211 return AndCondition (

212 self.menu.not_equals (None),

213 self.desired_order.equals (None),

214)

215

216 @review_menu_for_special.effect

217 def review_menu_for_special (self):

218 return AndEffect (InsertNewObjectEffect (
219 self,

220 self.desired_order,

221 OrderedItem,

222 [self, self.menu.speciall,

223 self.problem,

224 {yr)y

225 self.desired_order.status.assigned(OrderedItem.Status.SELECTED_BY_PATRON),
226)

227

228 # endregion action review_menu

229 # ===
230

231

232

233

234

152

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

J. C. MACBETH, ET AL.

[cont] class Patron(Person, CreatesNewObjects,

HasOompaMethods) :

[[

region action request_server

@OompaAction
def request_server (self):
pass

@request_server.precondition
def request_server (self):
return AndCondition (

self.server.near_to.not_equals (self),

@request_server.effect
def request_server (self):
return AndEffect (

self.server.near_to.assigned(self),

endregion action request_server

#

[[

region action place_order

@OompaAction
def place_order (self):
pass

@place_order.precondition
def place_order (self):
return AndCondition (

self.desired_order.not_equals (None),
self.server.near_to.equals (self),

@place_order.effect
def place_order (self):
return AndEffect (

self.server.order.assigned(self.desired_order),
self.desired_order.status.assigned (OrderedItem.Status

endregion action place_order

#

153

.ORDERED) ,

A VIEW OF THE RESTAURANT SCRIPT THROUGH THE LENS OF HIERARCHICAL PLANNING

295 [cont] class Patron (Person, CreatesNewObjects, HasOompaMethods) :

296

297 # === == ==

298 # region Method m_entering

299 @OompaMethod

300 def m_entering(self, table: Table) -> GoalMethod:
301 pass

302

303 @m_entering.goal

304 def m_entering(self, table: Table) -> Condition:
305 goal = self.table.equals(table)

306 return goal

307

308 @m_entering.precondition

309 def m_entering(self, table: Table) -> Condition:
310 return AndCondition(table.occupied.equals (False),
311 self.table.equals (None),)
312

313 @m_entering.body

314 def m_entering(self, table: Table) -> TotalOrderGoalTaskNetwork:
315 return TotalOrderGoalTaskNetwork (

316 self.sit (table),

317)

318

319 # endregion Method m_entering

320 # == == ==

321

322 # =======================================

323 # region Method m_ordering

324 @OompaMethod

325 def m_ordering(self, table: Table) -> GoalMethod:
326 pass

327

328 @m_ordering.goal

329 def m_ordering(self, table: Table) -> Condition:
330 return AndCondition(self.desired_order.not_equals (None),
331 self.desired_order.status.equals (OrderedItem.Status.ORDERED))
332

333 @m_ordering.precondition

334 def m_ordering(self, table: Table) -> Condition:
335 return AndCondition (

336 self.desired_order.equals (None),

337 table.menu.not_equals (None),

338)

339

340 @m_ordering.body

341 def m_ordering(self, table: Table) -> TotalOrderGoalTaskNetwork:
342 body = TotalOrderGoalTaskNetwork (

343 self.sit (table),

344 self.pickup_menu(),

345 self.review_menu_for_special(),

346 self.request_server(),

347 self.place_order (),

348)

349 return body

350

351 # endregion Method m_ordering

352 # ==== ====================

154

