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Abstract
We propose a novel approach to semantic frame parsing for human-robot interaction (HRI), grounded
in the FrameNet framework and integrated into the DIARC cognitive architecture. Our system
improves natural language understanding by supporting dynamic interpretation of frame-evoking
elements and their associated roles (frame elements) in real time. To expand lexical coverage and
improve robustness in open-ended dialogue, we incorporate a large language model (LLM) to sug-
gest additional lexical units for frame evocation and to assist in frame element filling. This hybrid
neuro-symbolic method improves upon existing robotic frame parsers, such as RoboFrameNet,
by enabling broader generalization and reflects the FrameNet ontology. We demonstrate that our
system facilitates downstream reasoning, planning, and reference resolution in situated interaction
scenarios. Our architecture-agnostic approach offers a flexible, modular parsing approach designed
for focused HRI domains where frame coverage can be curated and extended.

1. Introduction

Consider the following brief exchange between a human and a household robot:

Human: “Can you grab the mug from the table and bring it to me?”

Robot: “Okay.”

A shallow semantic parser might extract simple relational facts:

action(grab)
object(mug)
location(table)
recipient(human)

Although correct at a surface level, this representation does not capture the event structure that
supports planning and inference. Using FrameNet (Baker et al., 1998), the utterance evokes the
Bringing frame (a conceptual structure), which captures the movement of a THEME under control
of an AGENT from a SOURCE to a GOAL. A FrameNet-style parse makes these roles explicit:
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Frame: Bringing
Agent: robot
Theme: mug
Source: table
Goal: human
Carrier: robot_hand
Constant_location: in_hand
{...}

This frame-based structure supports downstream reasoning (e.g., validating that the mug is gras-
pable, or that a collision-free path exists). It also allows for generalization to similar requests (e.g.,
“Bring me the book from the shelf”)1, planning of intermediate actions (e.g., navigation around ob-
stacles), and more robust reference resolution in situated contexts. FrameNet-based knowledge thus
provides a principled way to structure the semantics of everyday language for natural, goal-directed
human-robot interaction.

To our knowledge, there are no FrameNet-based parsers tailored to dialogue and human–robot
interaction that account for embodiment. RoboFrameNet (Thomas & Jenkins, 2012) is a verb-
centric frame parser for robotics, but it fails to capture broader semantic domains that span both
general and specific concepts. These themes are as varied as chance, perception, communication,
transaction, time, space, motion, life, social context, emotion, and cognition (Baker et al., 1998).

The few FrameNet parsers that exist are trained on text and apply to domains that do not handle
situational dialogue or HRI settings (Kalyanpur et al., 2020; Swayamdipta et al., 2017; Das et al.,
2014). FrameNet is a lexicographic resource built from manually annotated example sentences
drawn largely from the British National Corpus (BNC) with additional full-text documents (Fillmore
et al., 2002; Ruppenhofer et al., 2010).

In practice, most FrameNet annotations originate in the BNC, a balanced but predominantly
written corpus (Davies, 2004). As a result, FrameNet-style parsers are typically trained on exemplar
and full-text annotations from FN 1.3 or FN 1.5/1.7 (e.g., SEMAFOR, Open-SESAME), reflecting
written prose rather than task-oriented dialogue with imperatives and questions (Das et al., 2010;
Kalyanpur et al., 2020).

FrameNet parsers are not built for HRI-style situated commands where roles and entities may
be implicit in a scene, and thus require augmentations to infer such information. (As an example,
consider the implicit role of a speaker or listener in an instruction.) The required adaptation is not
only to the language itself but also to the situational context that comes with embodiment—roles,
constraints, and referents that are not explicit in text. FrameNet parsing for HRI therefore needs
extra-linguistic input (perception, world state, norms) and tight coupling to a cognitive architecture
to support goal-oriented, agentic behavior. We address this by building FrameNet-based semantic
representations from both linguistic evidence and factual/perceptual input available to the agent,
yielding grounded structures that can complement a shallow parser that supplies dialogue-act intent.

1. When the verb lexicalizes transfer of possession (e.g., “hand/give X to Y”), we instead use the Giving frame, with
Recipient as a core role. In this example, the phrasing “bring . . . to me” naturally instantiates Bringing with Goal
= human.
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We present a FrameNet-based parsing approach tailored to human–robot interaction and in-
tegrated into the DIARC architecture (Scheutz et al., 2018). Our contributions are: (1) situated
FrameNet parsing for HRI that produces FrameNet-style structures (core and peripheral roles, frame
relations) and grounds them to percepts and a knowledge base in real time; (2) a hybrid neuro-
symbolic filling mechanism in which an LLM expands lexical units for frame evocation and per-
forms targeted frame-element filling when linguistic evidence is sparse while preserving transpar-
ent symbolic representations; and (3) tight architecture integration that links frame interpretations to
goal/plan generation in DIARC with feasibility checks from planning, with demonstrations in super-
market and kitchen scenarios showing improved planning and reference resolution over verb-centric
and shallow semantic baselines. Taken together, these results indicate that a situated, LLM-assisted
FrameNet yields semantic representations that are both interpretable and effective for embodied,
goal-directed HRI.

2. Background

Ontologies and lexical-semantic resources provide complementary structures for language under-
standing in HRI. Type hierarchies (e.g., object and place taxonomies) capture what entities are, but
they say little about the events those entities participate in or the roles they play. Frame semantics,
operationalized by FrameNet (Baker et al., 1998), fills this gap by modeling conceptual situations
(frames) together with their participants (frame elements, or FEs for short) and the words that evoke
them (lexical units, or LUs). This structure captures higher-level situational information that can be
leveraged for richer understanding and improved downstream reasoning for robots.

A frame names a schematic event, relation, or entity type (e.g., Apply_heat, Placing, or
Revenge). Each frame specifies both core FEs that are essential to defining the themes or agents in
an event and non-core or peripheral FEs that augment the event without redefining it. For example,
the Apply_heat frame includes the COOK, FOOD, HEATING_INSTRUMENT, and CONTAINER

core FEs and the TIME, MANNER, PLACE, DURATION, and PURPOSE peripheral FEs.
LUs (verbs, nouns, adjectives, and some multiword expressions) evoke frames; Apply_heat

is evoked by the verbs fry.v, bake.v, boil.v, and broil.v, among others. FrameNet also
defines frame–frame relations that organize frames into a conceptual network, including Inheritance
(is-a), Subframe, Using, Perspective_on, Precedes, and causative/inchoative links. Annotations pair
LUs with sentence spans and transcribe, for each realized FE, its (a) name/role, (b) grammatical
function (e.g., External_Argument, Object), and (c) phrase type (e.g., NP, PP); practically,
this yields FE triplets per example. Although many evokers are verbs, FrameNet explicitly covers
nominal and adjectival LUs (e.g., retaliation.n in Revenge, asleep.a in Sleep). The
English resource has on the order of a thousand frames and has motivated parallel FrameNet efforts
in other languages.

VerbNet (Kipper, 2005), another semantic ontology, groups verbs into classes with shared the-
matic roles and subcategorization patterns; it is verb-class centric and links predicate syntax to
coarse-grained roles and selectional restrictions. Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) encodes sentence meaning as an acyclic directed graph whose predicates are
typically PropBank framesets (Palmer et al., 2005) (e.g., give-01) with role labels like ARG0–
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ARG5. AMR is thus predicate-centric and anchored in PropBank rather than in a frame inventory of
event types. While both VerbNet and AMR are valuable, they lack FrameNet’s explicit inventory of
named frames with core/non-core FEs and frame–frame relations. For embodied HRI, FrameNet’s
situational roles (AGENT, THEME, SOURCE, GOAL, PATH, etc.) align more naturally with ground-
ing, reference resolution, and planning constraints.

Building on these resources, Dialogue-AMR (Bonial et al., 2020) extends AMR with speaker
intent (illocutionary force), tense, and aspect to better support human-robot dialogue. Like our work,
Dialogue-AMR adapts an existing semantic framework to HRI. The key difference is that Dialogue-
AMR introduces new annotation layers, while our approach focuses on automatically generating
FrameNet parses that can complement simpler intent-based parsing (e.g., commands, questions,
statements). Our goal is to make FrameNet practical for situated, embodied use by embedding it
into a cognitive architecture.

RoboFrameNet (Thomas & Jenkins, 2012) likewise targets robotics applications, but its verb-
centric semantics do not capture higher-level situational frames and events in the way FrameNet
does. Thus, it is not directly equivalent to FrameNet as a general lexical ontology for HRI. A
comparison between RoboFrameNet and our approach is detailed in section 5.

FrameNet parsing itself is challenging. It involves target identification (determining what words
evoke a frame), frame identification (assigning the frame), and argument labeling (marking spans
for core and non-core roles). Existing state-of-the-art parsers include SEMAFOR (Das et al., 2010),
Open-SESAME (Swayamdipta et al., 2017), and the generative and multi-task parsers introduced
by Kalyanpur et al. (2020). However, these approaches are not designed for embodied, multimodal
contexts or HRI; they operate on text and cannot leverage perceptual grounding or contextual infor-
mation that is crucial in HRI.

In general, semantic parsing refers to the task of mapping natural language utterances to struc-
tured meaning representations ranging from logical forms and robot actions to frame-semantic roles
and arguments. For robotic applications, many recent systems leverage end-to-end neural semantic
parsers, often powered by large language models (LLMs) to map natural language directly to struc-
tured outputs such as robot actions or logical forms. These approaches typically bypass intermediate
symbolic structures, instead relying on sequence-to-sequence models to perform direct interpreta-
tion. While this strategy enables strong generalization and robustness to linguistic variation, it often
sacrifices transparency and interpretability. Notably, such systems rarely produce structured inter-
mediate representations (such as semantic frames or compositional meaning structures) that can be
inspected and manipulated for reasoning and downstream modules.

SayCan (Ahn et al., 2022), for example, combines an LLM with affordance-based planning to
interpret high-level instructions via interpretable affordance graphs, offering a transparent interface
for grounding linguistic input in physical capabilities. While such methods move toward integrating
symbolic knowledge in planning, the language understanding component remains opaque, lacking
explicit symbolic decomposition.

Recent work has also investigated the use of LLMs beyond parsing, particularly for high-level
planning and reasoning in interactive settings. For instance, TidyBot (Wu et al., 2023) uses an
LLM to infer object categories, user preferences, and personalized clean-up strategies in home
environments. While this approach showcases the capacity of LLMs for flexible, context-sensitive

4
102



FRAME SEMANTICS FOR HUMAN-ROBOT INTERACTION

reasoning in HRI, it still lacks the structured semantic representations—such as frames or logical
forms.

In contrast, a broad class of robot language understanding systems has traditionally empha-
sized symbolic semantic parsing as a foundation for mapping language into executable actions or
structured logical forms. For example, Tellex et al. (2011) stress the importance of interpretable
intermediate representations for grounding natural language in robotic settings. Their model, Gen-
eralized Grounding Graphs (G3), uses the linguistic structure of commands to dynamically build
probabilistic graphical models that link language constituents to groundings in the robot’s environ-
ment—enabling compositional and transparent interpretation. Several frameworks leverage Com-
binatory Categorial Grammar (CCG) or logic-based formalisms to support this mapping: Artzi
& Zettlemoyer (2013) use weak supervision to train CCG-based parsers that map instructions to
grounded action sequences, while Matuszek et al. (2013) employ a probabilistic CCG model to
translate route descriptions into a LISP-style Robot Control Language (RCL) capable of expressing
procedural structures like loops and conditionals.

Together, these approaches demonstrate the value of transparent, structured semantic represen-
tations in enabling robust, interpretable, and grounded language understanding for robotic agents.
Our work draws on this tradition while extending it with FrameNet-based situational semantics.

While FrameNet offers a rich, manually curated lexicon grounded in frame semantics, its utility
as a general-purpose knowledge base for intelligent agents has been challenged. As discussed by
McShane et al. (2024), attempts to leverage FrameNet for learning and interpretation in language-
endowed intelligent agents (LEIAs) revealed some challenges: inconsistent frame granularity, metaphor-
ical usages, ambiguous role labels. Additionally, FrameNet was not originally built for agents.
These limitations suggest that FrameNet is most effective when used selectively: targeting frames
that align well with an agent’s internal representations and domain-specific goals. We acknowledge
this constraint. Rather than treating FrameNet as a universal semantic solution, we use it as a struc-
tured representation for context, event structure, and role expectations for human–robot interaction
tasks in constrained domains. When paired with perceptual and situational knowledge, even a small
subset of frames (central to HRI) can support transparent situated interpretation and reasoning. This
hybrid approach supports the claim in McShane et al. (2024) that semantic resources are most useful
when tightly integrated into an intelligent system that understands how to use the frame information.
In our system, frame knowledge is explicitly embedded within a broader cognitive architecture to
support real-time HRI.

By coupling the FrameNet lexical database (to trigger frames from lexical units) with large lan-
guage models (to assist with argument identification and labeling), we enable situated interpretation
for HRI. Perceptual components and a knowledge base further contribute extra-linguistic informa-
tion (e.g., settings, roles, and object properties) to frame interpretation. In the next section, we
describe this architecture in detail.
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Figure 1: Cognitive architecture integrating FrameNet parsing, first-order logic representation, and
an LLM component within the DIARC architecture. Utterances are incrementally interpreted into
both FrameNet-style frame structures and logical semantic forms. The FrameNet Parser works in
tandem with a semantic interpreter and LLM component, updating the knowledge base with frame-
level knowledge including settings, roles, and contextual information. Reference resolution, goal
management, and action execution are grounded in both perceptual inputs (from vision and speech)
and internal beliefs, enabling situated understanding and behavior.

3. System Overview

3.1 Cognitive Architecture

Figure 1 shows our cognitive architecture, which consists of various interdependent components that
support perception, reasoning (including language understanding), and action. We will focus on the
language and reasoning components of this architecture, as they are core to the parsing approach.

Our architecture integrates a FrameNet-based parser (acting as our FrameNet component) along-
side a first-order logic semantic interpreter and a large language model (LLM) component. This
system parses utterances into dual semantic structures: a flat logical form (suitable for action exe-
cution and reasoning) and a structured FrameNet frame representation (useful for role assignment,
context modeling, and conceptual inference). The FrameNet parser receives initial semantic input
from the linguistic interpreter and collaborates with the LLM component to fill in missing frame el-
ements when lexical gaps or underspecification occur. These frame-based representations are then
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stored in the knowledge base, where they can support downstream reference resolution, dialogue
management, and goal inference.

In our system, FrameNet parsing operates in parallel with a CCG-style semantic interpreter that
produces logical forms annotated with speaker intent (e.g., INSTRUCT, QUESTION, STATEMENT).
This dual representation captures both the propositional content of an utterance and its illocution-
ary force—information crucial for dialogue management in instructional human–robot interaction.
While FrameNet excels at modeling situational structure and participant roles, it does not explicitly
encode communicative intent or dialogue function. By integrating both representations, our archi-
tecture enables robots to distinguish not just what action or event is described, but also whether
the speaker is issuing a command, asking a question, or making an observation. This design paral-
lels extensions like Dialogue-AMR (Bonial et al., 2020), which augment semantic representations
with dialogue act information. In our implementation, FrameNet complements rather than replaces
intent-based parsing.

The distinguishing feature of this architecture is its capacity to support FrameNet parsing in an
embodied, situated context. Because the system is embedded in a broader cognitive architecture
with access to perceptual components (e.g., vision and speech), frame role labeling can draw on
real-world referents, visual search results, and context-specific goals. The knowledge base further
enriches interpretation by contributing stored facts, beliefs, and persistent object knowledge. This
situated integration enables FrameNet-style parsing to support grounded interpretation in structured
human–robot interactions.

4. FrameNet Parsing Methodology

Our methodology addresses the three subtasks of FrameNet parsing: target identification, frame
identification, and argument labeling. We describe how each step is adapted to the needs of situated
human–robot interaction.

4.1 Target Identification

The system receives an utterance as input, such as: “Hand it to me.” This utterance is passed to
the FrameNet component, which performs target identification—the process of detecting lexical
units (LUs) that potentially evoke frames. We implement a deterministic dictionary-based lookup,
mapping observed words to their associated frames in FrameNet.

This step presented a unique challenge in HRI. While FrameNet’s lexicon contains many LUs
for frames (e.g., the Containers frame includes LUs such as amphora.n, bag.n, barrel.n,
basin.n), these do not always align with the verbs and nouns commonly used in instructional
or command-oriented dialogue. For instance, many everyday directives in HRI (“hand”, “pass”,
“give”) evoke frames relevant to transfer or exchange but are not always robustly covered by the
default lexical units. In other cases, evolution in modern language or gaps in the corpus may lead
to some frames not being triggered. Addressing this mismatch required both extending FrameNet’s
LU coverage and introducing additional filtering downstream.
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4.2 Frame Identification

The candidate frames generated during target identification provide the initial hypotheses. At this
stage, the large language model (LLM) component (GPT-4) is invoked to refine the set. The LLM
is prompted with the candidate frames, the original utterance, and symbolic world knowledge from
the knowledge base (KB). Using this combined input, the LLM selects only those frames that are
contextually appropriate.

For example, in “hand it to me”, both Giving and Placing may be triggered, but the KB
(which encodes that the speaker is the intended recipient) and the linguistic context favor Giving.
This step therefore operationalizes frame identification as a contextual disambiguation task, lever-
aging both linguistic and situational evidence.

4.3 Argument Labeling

Once the relevant frames have been identified, their frame elements (roles) must be instantiated.
Here, we again rely on the LLM, which fills roles based on (a) the original utterance and (b) facts
from the KB. The KB may contain dialogue history, perceptual beliefs, or contextual information
such as speaker identity, listener identity, or current task goals.

Argument filling often requires incorporating implicit situational roles. For instance, in “Hand
it to me”, the Giving frame requires an AGENT, THEME, and RECIPIENT. While only “me”
(AGENT) and “it” (THEME) are explicit, the KB supplies the RECIPIENT (the robot, as addressee).
This results in a more complete parse than what surface text alone would provide.

The final parse is a composite frame, which may include multiple relevant frames: a frame
describing the essential “verb” of the situation (e.g., Giving) together with more specific ones that
augment particular roles at play (e.g., Container). This multi-frame representation is useful for
HRI, where utterances often evoke overlapping event structures. Frames are serialized into Prolog
facts for symbolic reasoning (planning, action selection) and are also stored in the KB with unique
frame IDs, allowing them to persist across dialogue turns and be updated during interaction.

4.4 Representation Format

Frame information is stored in structured JSON objects, enabling runtime access and modification
of LUs, core roles, peripheral roles, and frame–frame relations. A shortened example representation
is shown below:

{
"frame": "Grasp",
"lexical_units": ["grab.v", "grasp.v", "seize.v", "snatch.v"],
"core_frame_elements": {

"Agent": "The entity performing the grasping",
"Item": "The object being grasped"

},
"peripheral_frame_elements": {

"Instrument": "Tool used by the Agent to grasp",
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"Manner": "How the grasping is performed",
"Place": "Location of the grasping event"

},
"frame_relations": {

"inherits_from": ["Manipulation"],
"inherited_by": ["Arrest"]

}
}

This structured representation allows the parser to operate both symbolically (via KB integra-
tion) and neurally (via LLM-based filling), ensuring that frame-based semantics are transparent,
interpretable, and suitable for downstream robotic reasoning.

5. Comparison to Existing Semantic Frame Representation

While both our system and RoboFrameNet (Thomas & Jenkins, 2012) adopt a FrameNet-inspired
approach to semantic parsing, these architectures and underlying assumptions diverge substantially.
RoboFrameNet focuses on verb-centric representations, where each action verb (e.g., turn, grab,
go) is mapped to a predefined semantic frame with core roles extracted from syntactic dependency
parsing. Despite some theoretical and implementation details that differ from the FrameNet rep-
resentation, they still consider the main concepts of a semantic frame: including semantic frames,
lexical units, core and non-core roles, and frame elements. This approach supports rapid seman-
tic parsing in robot middleware, but is limited to surface-level verb frames and rigid mappings,
neglecting peripheral roles, frame inheritance information, or contextual grounding.

The semantic frame representation in RoboFrameNet resourcefully leverages existing tech-
niques in natural language processing (dependency parsing) to determine grammatical relations
from natural language input. However, a key insight of the FrameNet representation is that it cap-
tures frame elements that may diverge from grammatical (syntactic) roles. Consider this example:

These two examples illustrate key limitations of dependency-based parsing in capturing event
semantics. In Table 1, FrameNet distinguishes intentional roles like AVENGER, OFFENDER, and
INJURY, even when they are realized syntactically as prepositional phrases modifying the same
verb. Dependency parsing, by contrast, offers no semantic differentiation; both “with you” and “for
this” are treated as generic modifiers of “get.”

Table 2 presents a more grounded, instruction that is more fitting of the robotics domain. The
phrase “from the red toolbox” is ambiguous from a syntactic standpoint; it could modify either
“hand” or “screwdriver.” Dependency parses cannot resolve this ambiguity or determine the in-
tended semantic relation. FrameNet, however, interprets it within the Giving frame, labeling
“me” as RECIPIENT, “screwdriver” as THEME, and “red toolbox” as SOURCE. These are concep-
tual roles critical for robotic planning and object grounding.

These examples highlight how FrameNet semantic roles more closely align with the reasoning
needs of embodied agents than traditional syntactic roles. Our framework builds on this insight
by incorporating large language models (LLMs) as semantic fillers for frame elements. Because
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Dependency Parse FrameNet Semantic Parse

Sentence: I’ll get even with you for this. Frame: Revenge

Verb: get → root Lexical Unit: get_even.v
Subject: I → nsubj(get) Avenger (Core FE): I

Prepositional Phrase: with you → prep(get) Offender (Core FE): with you

Prepositional Phrase: for this → prep(get) Injury (Core FE): for this

Interpretation: The two PPs “with you” and “for
this” are structurally indistinct — both are modi-
fiers of the verb “get.” Dependency structure pro-
vides no semantic differentiation.

Interpretation: FrameNet reveals event-level
roles: “with you” names the Offender; “for this”
identifies the Injury. These roles are crucial to un-
derstanding the intent behind the action.

Table 1: Comparison of dependency parsing and FrameNet semantic role labeling for the sentence
“I’ll get even with you for this.” FrameNet enables conceptual distinctions between participants
(AVENGER, OFFENDER, INJURY) that are indistinguishable syntactically.

Dependency Parse FrameNet Semantic Parse

Sentence: Hand me the screwdriver from the red
toolbox.

Frame: Giving

Verb: hand → root Lexical Unit: hand.v
Indirect Object: me → iobj(hand) Recipient (Core FE): me

Direct Object: screwdriver → dobj(hand) Theme (Core FE): screwdriver

Prepositional Modifier: from the red toolbox →
prep(hand) or prep(screwdriver)

Source (Core FE): red toolbox

Interpretation: Structural roles (subject, objects,
modifiers), but attachment is ambiguous: Is “from
the red toolbox” describing where to fetch or which
screwdriver?

Interpretation: Semantically explicit roles: Agent
gives Theme to Recipient, with Source specified.
Attachment ambiguity resolved by frame structure.

Table 2: Comparison between dependency parsing and FrameNet semantic role labeling for a robot-
directed instruction. FrameNet assigns conceptually meaningful roles (Theme, Source, Recipient)
that may not align directly with syntactic roles or resolve from grammar alone.

LLMs are not bound to grammatical dependencies, they can infer frame structures from broader
context, including perceptual and situational cues—enabling robust interpretation and disambigua-
tion in situated environments. This flexibility allows us to recover richly structured FrameNet-style
representations in real time, suitable for grounded HRI and symbolic reasoning.

We offer an overall comparison of RobotFrameNet semantic frame and our semantic frame
representation to highlight the richness of our representation with more frames and roles. On the
right of Table 3 is a fuller representation for an HRI setting where there are multiple frames (we
refer to this as a composite frame) triggered from the utterance “Dempster, bring the mug to Evan’s
office tomorrow.”

This comparison underscores the strength of our approach. Unlike RoboFrameNet’s verb-
centric parsing, which maps a single lexical item to a single frame, our method constructs com-
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RoboFrameNet Representation FrameNet Representation

Frame: Bringing
Lexical Unit: bring.v
Core FEs: Agent (dempster), Theme (mug), Goal
(Evan’s office)
No peripheral roles modeled
No additional frames triggered
No frame relations or inheritance modeled
Context: Unspecified — no link to world model or
perceptual systems.
Use: Maps directly to a robot action like
bring(Agent, Theme, Goal).

Frames Triggered:
Bringing (via bring.v)

Agent: dempster
Theme: the mug
Goal: Evan’s office
Carrier: null (unspecified)
Time (peripheral): tomorrow

Containers (inferred from noun mug)
Container: mug
Contents: null

Locative_relation (supporting spatial reasoning)
Figure: mug Ground: Evan’s office

Calendric_unit (via tomorrow)
Relative_time: tomorrow

Frame Relations:
Bringing uses Cause_motion and Motion
Containers inherits from Object_properties

Contextual Integration:
Roles linked to referents in the knowledge base and

visual scene
Frame-to-Plan grounding supports constraint vali-

dation (e.g., is “mug” graspable?)

Table 3: Comparison between RoboFrameNet’s verb-centric frame parsing and our multi-frame
situated FrameNet interpretation for the utterance “Dempster, bring the mug to Evan’s office tomor-
row.”

posite frames by triggering multiple frames from distinct lexical units in the utterance. This enables
the system to capture both the primary action (Bringing) and additional situationally relevant
structures such as containers, spatial relations, and temporal modifiers.

Importantly, the overlapping lexical spans across frames do not introduce redundancy, but rather
highlight different conceptual facets of the same expression. For example, “mug” simultane-
ously evokes the role of THEME in the Bringing frame and the role of CONTAINER in the
Containers frame. Similarly, “tomorrow” activates both a peripheral TIME element and the
Calendric_unit frame. Although these overlaps share surface spans, the semantic roles they
fill are frame-specific, providing non-interchangeable information that is crucial for downstream
reasoning.

By allowing multiple frames and frame elements to co-exist, our representation produces a
fuller interpretation of utterances from multiple perspectives. This directly supports situational
awareness for embodied agents: the robot is not only informed that an action of Bringing must
occur, but also that the object to be manipulated is a container, that the goal location is grounded
in a spatial relation, and that the event is temporally constrained. Such richly structured semantics
support tighter coupling between natural language understanding, perception, and planning, and can
improve task execution in structured HRI environments.
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6. Demonstrations

This work is novel, and our implementation of the pipeline is in progress. We have seen success
using the LLM to extend the dictionary of frame-evoking units, as well as identifying and filtering
frames from given utterances. The following demonstrations, specifically tables 5 and 7, include
some of the preliminary results of our pipeline. The model is able to accurately identify key context-
defining frames and integrate knowledge base data to attempt frame filling. In addition, we evaluate
potential downstream applications of frame knowledge on tasks such as norm-based reasoning and
planning (so far unimplemented).

6.1 Supermarket example: cashier

The retail environment, specifically a supermarket, is commonly referenced in HRI. In our example,
the robot takes the role of the cashier, taking the human customer through the checkout process. The
robot follows a predefined script of actions, including retrieving items from the conveyor belt, cart,
or basket, scanning each product, and bagging them. This scenario presents a rich and detailed
environment that contains a diverse array of objects and social norms to track.

As a representative case, we focus on one particular moment in the execution of this script:
returning the checked-out items to the customer after they have been paid for. Such a command
might read, “Return the items to the customer.” At this instant, the robot is aware of several objects
in the environment, summarized in Table 4. In addition to the intended object of the script — the
bag containing the purchased groceries — there are also three distractor objects: an empty grocery
bag, a cash register, and the money inside the register. The task of the robot is to determine which
object to return and, subsequently, which concrete action to take.

Object Description Properties
Person0 The human customer the robot interacts with object, person,

customer

Bag0 An empty grocery bag object, bag, grasp

Bag1 A full grocery bag object, bag, grasp,
contains

Groceries0 Merchandise in the bag object, grasp,
contained

Register0 The cash register object, register,
grasp, contains

Money0 The cash inside the register object, money,
grasp, contained

Table 4: Supermarket environment objects and their properties.

In the semantic frame parsing workflow we propose, the robot would have access to a number
of sources of information. In the scene leading up to this particular moment, utterances and actions,
in addition to a priori knowledge, will have built up a knowledge base about the objects (Belief,
tabularly represented by Table 4) and about the context itself (FrameDatabase). Table 5 contains a
snapshot of the frames currently active and their relations.
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Frames triggered
Commerce_goods-transfer

Buyer: Person0
Seller: self
Goods: Groceries0
Money: Money0

Placing
Agent: self
Goal: Person0
Theme: Groceries0

Containers
Container: Bag1
Contents: Groceries0

Table 5: Supermarket environment frame relations (FrameNet frames).

From the semantic and frame information, reference resolution can then solve for “the items"
which are to be returned: As self is the seller, the goods — Groceries0 — must be the desired
object. However, the groceries are contained inside Bag1. Therefore, the planner reasons that the
bag must be placed near the consumer. Indeed, the bag is graspable, so the robot moves the bag,
ending the transaction.

6.2 Kitchen example: assisting in food preparation

The household kitchen is another common domain in HRI, involving many manipulable objects,
spatial relations, and practical constraints about cleanliness and task ordering. In our example, the
robot assists a human in preparing a meal. The robot follows a collaborative plan that includes
fetching utensils and ingredients and performing light preparation tasks.

As a representative case, the human is cooking soup and requests, “Pass me the spoon.” At this
instant, the robot’s perceptual system detects multiple candidate spoons along with other nearby
items, summarized in Table 6. In addition to the intended clean spoon for stirring, there is a dirty
spoon on the counter and other distractors.

In our semantic frame parsing workflow, the robot’s knowledge base includes both object prop-
erties and currently active frames relevant to the situation. Table 7 shows a snapshot of these frames.
We rely on FrameNet frames (e.g., Giving, Containers, Apply_heat), while practical clean-
liness preferences are modeled as rules in the KB.
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Object Description Properties
Person0 The human cook the robot is assisting object, person, cook

Spoon0 A clean metal spoon on the counter object, utensil,
spoon, grasp, clean

Spoon1 A dirty spoon with sauce residue object, utensil,
spoon, grasp, dirty

Pot0 A pot containing soup on the stove object, container,
pot, contains

Soup0 Soup inside the pot object, food,
contained

Stove0 A stovetop that can apply heat object, appliance,
stove, heat_source

Table 6: Kitchen environment objects and their properties.

Frames triggered
Giving

Agent: self
Recipient: Person0
Theme: Spoon? (to be resolved)

Containers
Container: Pot0
Contents: Soup0

Apply_heat
Container: Pot0
Cook: Person0
Food: Soup0
Heating_instrument: Stove0

Table 7: Kitchen environment frame relations (FrameNet frames). Practical cleanliness preferences
are modeled as KB rules, not as frames.

Contextual KB rules
prefer_clean_utensil(U) :- utensil(U), clean(U).
avoid_dirty_utensil(U) :- utensil(U), dirty(U).

From the frame information and KB rules, reference resolution selects Spoon0 as the intended
referent for “the spoon”. Although both Spoon0 and Spoon1 satisfy the lexical category spoon,
the KB rule prefers clean utensils for immediate food preparation, ruling out Spoon1. The planner
then executes: grasp Spoon0 and hand it to Person0, completing the Giving frame.

Beyond reference resolution, active frames provide additional inferences about the environment.
For example, knowing that Soup0 is the CONTENTS of Pot0 within a Containers frame, and
that Pot0 participates in Apply_heat, the robot can anticipate ongoing cooking actions and con-
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straints. For example, it may reason that removing the soup from the heat implies moving the pot
that contains it, and not grasping the soup itself; or it may reason that the stove’s heat may be ad-
justed if the recipe calls for it. These facts are provided by the Containers and Apply_heat
frames, respectively. This overlapping frame knowledge supports more robust interpretation, allow-
ing the robot to act meaningfully even when perceptual information is partial or underspecified.

7. Discussion & Conclusion

Our hybrid parsing approach demonstrates both promise and limitations for situated human–robot
interaction. On the one hand, it enables transparent and verifiable semantic representations that
can be directly inspected before being committed to the robot’s knowledge base. The transparency
of using the existing FrameNet lexical database allows our parse to be faithful to the FrameNet
ontology, even though we heavily integrate an LLM component for lexical unit expansion, frame
pruning, and role labelling and filling. In this way, our approach is more transparent than using an
LLM end-to-end in creating a final composite frame. This transparency is particularly valuable in
HRI, where safety and trust depend on interpretable reasoning.

At the same time, the system does not yet capture the full richness of dialogue phenomena (e.g.,
disfluencies, ellipses, corrective language), and the LLM component can potentially misclassify
frames. Moreover, frame persistence remains an open challenge (robustly linking frames referenced
across different turns in dialogue), such that a frame evoked early can be consistently re-identified
when it is referenced later. Further, it may prove difficult to detect when particular frames should
be dropped from consideration after being evoked. Future work should address temporal frame
tracking to ensure continuity in frame-based dialogue understanding.

Beyond its immediate implementation, the approach is designed for focused HRI domains where
frame coverage can be curated and extended, rather than for unrestricted open-domain language un-
derstanding. We argue that the compromise between rule- and LLM-based pipelines is particularly
appropriate in these domains: rules provide speed, transparency, and symbolic grounding, while
LLMs supply flexibility and coverage in open-ended dialogue.

In addition to the parser itself, the choice of FrameNet as a representational backbone has
broader benefits for HRI. Frame-based representations provide a structured semantic layer that sup-
ports conceptual inference and symbolic reasoning. While our system is not designed for open-
domain language understanding, it enables generalization across related interactions within focused
domains by leveraging shared or related frame structures. This capability is made possible and
understandable by FrameNet’s hierarchical frame structure. As a simple example, a robot that has
knowledge of the Commerce_goods-transfer frame (with roles such as BUYER, SELLER,
and GOODS) may encounter a novel scenario that does not have these precise components but which
overlaps with this frame in its broad structure. By mapping the observed interaction onto the more
general Transfer_scenario or Exchange frames, the robot can still reason about participant
roles and actions, leaving room to adapt or specialize once a more specific frame is introduced or
learned. This ability to scaffold understanding with existing frames makes FrameNet a valuable
resource for enabling flexible and adaptive interpretation in dynamic environments. Furthermore,
our framework is flexible enough to support learning: frames can be extended or refined for new

15
113



M. ABRAMS, C. BAO, AND M. SCHEUTZ

domains either manually or through natural language interaction, enabling incremental adaptation
over time.

In contrast, there are certainly arguments for end-to-end foundation model approaches to goal-
oriented robotics, and we do not aim to reject them out of hand. However, we argue it is important to
acknowledge the benefits that a hybrid neuro-symbolic approach can provide in terms of flexibility
and robustness. Real-world expectations of robots, especially in team-oriented scenarios, hinge on
the reliability and transparency of reasoning agents (Hancock et al., 2011; Ososky et al., 2013). The
addition of deterministic frame evocation and the restriction of output to semantic frames decrease
variance in output and allow for increased understandability of the frame parser as a whole. Other
considerations include the prevalent issue of hallucination in foundation models (Rawte et al., 2023),
as well as the maintainability of a contextual knowledge base that adapts to a changing environment.
We believe that requiring a frame-parsing component to act within symbolic constraints will allow
for more predictable results and a more extensible scaffold to build upon.

Beyond the immediate implementation details, our framework also offers three broader ad-
vantages. First, by supporting composite frames, it goes beyond single-frame mappings: multiple
frames may be triggered by overlapping lexical spans, and these overlaps enrich rather than du-
plicate information, leading to greater situational awareness for the agent. Second, frame seman-
tics naturally connects to normative and contextual reasoning. Unlike representations anchored in
syntax or dependency parsing—or even other semantic approaches such as Dialogue-AMR—our
frame-based approach highlights roles and expectations that map directly onto social norms, task
constraints, and pragmatic reasoning. These representations are not mutually exclusive: they can be
employed in parallel with other semantic formalisms (e.g., a lambda-calculus or CCG-style seman-
tic parse for direct compositional semantics), yielding complementary layers of meaning. Third,
while our approach does not aim for unbounded scalability, frames generalize across related events
within curated domains, supporting flexible adaptation to complex tasks, multimodal integration,
and transfer across structured interaction settings. Together, these properties make frame-based
parsing a promising foundation for situated, interpretable language understanding in HRI.

In conclusion, we advocate for semantic representations that go beyond surface-level proposi-
tions, incorporating frame structures, conceptual roles, and frame-to-frame relationships that enable
deeper situational understanding in HRI. While the presented approach is an initial step, it illustrates
how combining symbolic transparency with neural flexibility can yield interpretable yet robust lan-
guage understanding for embodied agents. Crucially, it is the surrounding cognitive architecture that
enables this style of frame parsing to function effectively: by situating the parser within a broader
reasoning and planning framework, the agent can ground frames in perception, update them dy-
namically, and use them to guide action. Future extensions will involve updating frame information
through dialogues, expanding coverage of dialogue phenomena, and integrating online learning
mechanisms. Taken together, these directions highlight a broader research agenda: building robots
that understand not only words, but the frames of meaning that structure human communication.
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