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Abstract

As algorithmic decision-makers are increasingly applied to high-stakes domains, Al alignment re-
search has evolved from a focus on universal value alignment to context-specific approaches that
account for decision-maker attributes. Prior work on Decision-Maker Alignment (DMA) has ex-
plored two primary strategies: (1) classical Al methods integrating case-based reasoning, Bayesian
reasoning, and naturalistic decision-making, and (2) large language model (LLM)-based methods
leveraging prompt engineering. While both approaches have shown promise in limited domains
such as medical triage, their generalizability to novel contexts remains underexplored. In this
work, we implement a prior classical AI model and develop an LLM-based algorithmic decision-
maker evaluated using a large reasoning model (GPT-5) and a non-reasoning model (GPT-4) with
weighted self-consistency under a zero-shot prompting framework, as proposed in recent literature.
We evaluate both approaches on a health insurance decision-making dataset annotated for three
target decision-makers with varying levels of risk tolerance (0.0, 0.5, 1.0). In the experiments re-
ported herein, classical Al and LLM-based models achieved comparable alignment with attribute-
based targets, with classical Al exhibiting slightly better alignment for a moderate risk profile.
The dataset and open-source implementation are publicly available at: https://github.com/TeX-
Base/Classical AIvsLLMs and https://github.com/Parallax-Advanced-Research/ITM.

Thiswork islicensed under a Creative Commons Attribution International 4.0 License.
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1. Introduction

The advancement of large language models (LLMs) represents a new approach to building algorith-
mic decision-makers (DMs) in high-stakes domains (Liu et al., 2024; Hu et al., 2024; Guan et al.,
2025). Unlike classical Al systems that rely on explicit rules and optimization procedures, LLM-
based DMs draw on contextual reasoning and linguistic inference to approximate human judgment
(Ravichandran et al., 2025; Chen et al., 2025b), offering an alternative for algorithmic decision-
making. This raises a critical question: what advantages and limitations arise from each approach,
particularly in their capacity to align with human decision-making attributes? In this work, we inves-
tigate how classical Al and LLM-based DMs can be designed to achieve decision-maker alignment
(DMA), which occurs when algorithmic outputs reflect the reasoning processes of human decision-
makers who operate under uncertainty, pressure, and limited resources (Sen et al., 2025). Under
such conditions, where there is often no single correct answer, humans rely on cognitive attributes
such as risk tolerance, cognitive reflection, and biases to guide their choices (Mainali & Weber,
2025). Designing algorithmic DMs that account for this variability requires methods that align not
only with contextual factors but also with the diverse cognitive profiles that characterize human
decision-making (Christian, 2020).

Recent alignment research has largely focused on enforcing fixed ethical principles, such as hon-
esty, helpfulness, and harmlessness, through reinforcement learning from human feedback (RLHF)
(Ouyang et al., 2022; Bai et al., 2022). However, this approach does not necessarily translate to
improved decision-making in dynamic, high-stakes contexts, as its rigidity limits adaptability to
evolving, context-dependent scenarios (Fox, 2024). This limitation becomes particularly salient
when values diverge across individuals, influenced by situational context, personal preferences, and
social trade-offs. In such cases, algorithmic decision-makers must integrate moral commonsense
reasoning and mediate conflicting preferences, which extend beyond the scope of universal align-
ment alone (Jiang et al., 2022; Sorensen et al., 2024). Designing algorithmic DMs that are alignable
with these nuanced attributes remains a key challenge, demanding context-specific alignment that
reflects how humans actually reason and decide, rather than how they are expected to choose op-
timally. Building on the notion of context-specific alignment, Hu et al. (2024) demonstrated that
LLMs could be leveraged to align algorithmic decisions with cognitive attributes through zero-shot
prompting and weighted self-consistency, potentially capturing nuanced human reasoning in dy-
namic, high-stakes contexts.

Classical Al approaches to decision-maker alignment employ structured reasoning techniques to
emulate human decision-making under uncertainty, limited resources, and time pressure (Molineaux
et al., 2024). Methods such as case-based reasoning, Bayesian inference, and naturalistic decision-
making are employed to model how decision-makers utilize cognitive attributes when navigating
complex choices (Molineaux et al., 2024). For example, Molineaux et al. (2024) proposed a case-
based reasoning framework for combat medical triage, aligning the system outputs with decision-
maker attributes using labeled prior cases. In this work, we extend a classical Al-based algorithmic
decision-maker (DM) to a health insurance domain and implement an LLM-based algorithmic DM
using Hu et al.’s methodology, adapting zero-shot prompting with weighted self-consistency on the
same health insurance dataset and decision-maker targets defined in our experiment. This setup
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allows a direct comparison of how each paradigm aligns with human cognitive attributes under
consistent experimental conditions.

Although classical Al approaches to decision-maker alignment have been evaluated on the
health insurance domain (Sen et al., 2025), LLM-based methods such as Hu et al. (2024) have
not. Moreover, Hu et al.’s implementation poses practical challenges for direct evaluation in our
context, including reliance on older models (LLaMA 2) with smaller context windows and lower
reasoning performance compared to newer models, the need to download large model weights, and
integration within a federated system that depends on external servers. These limitations make it
difficult to apply the original implementation to our dataset and decision-maker targets. Our goal
is to fill this gap by re-implementing the LLM-based methodology and evaluating both classical Al
and LLM-based DMs on the same health insurance dataset with the same decision-making attribute,
risk tolerance, designed specifically for our experiments.

For the LLM-based algorithmic DM, we develop a decision-maker using Hu et al.’s method-
ology to ensure reproducibility and compatibility with our experimental setup. We evaluate two
models: GPT-5, a reasoning model, and GPT-4, a non-reasoning model, both using weighted self-
consistency with zero-shot prompting. For the classical Al algorithmic DM, we re-implement the
algorithm proposed by Molineaux et al. (2024), and evaluate both DMs on the same target decision-
makers. This design enables a direct comparison of alignment accuracy across individuals with
varying levels of risk tolerance. Our contributions are twofold: (1) we introduce a LLM-based DM
tailored to risk-sensitive decision-making, fully self-contained without reliance on federated sys-
tems or external servers, and (2) we provide a systematic comparative analysis of classical Al and
LLM-based DMs, offering insights into the design of adaptive, cognitively grounded algorithmic
decision-makers.

The remainder of this paper is organized as follows. Section 2 reviews related work on algo-
rithmic decision-makers and alignment strategies. Section 3 details our methodology, including
the construction of the classical Al baseline, the LLM-based decision-maker, and the evaluation
metric applied to the health insurance dataset. Section 4 reports results, highlighting the compara-
tive strengths and trade-offs of each approach. Section 5 concludes with our key findings and the
directions for future research.

2. Background

In this section, we first review research on decision-maker alignment, highlighting foundational
work in value alignment and recent developments in pluralistic alignment. We then discuss both
classical approaches and emerging methods that leverage LLMs to capture user- and domain-specific
variability. Finally, we provide an overview of the dataset used in our experimental study.

2.1 Decision-Maker Alignment

Human decision-making is guided by internal mental models that shape how individuals perceive
alternatives, evaluate risks, and select courses of action (Chermack, 2003). A central finding across
cognitive science and psychology is that choices often diverge from the assumptions of rational
choice theory, particularly in uncertain or high-stakes environments (Tversky & Kahneman, 1974).
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In such contexts, decision makers are frequently forced to select suboptimal options due to environ-
mental or cognitive limitations (Simon, 1955).

Decision-Maker Alignment (DMA) refers to the design of algorithms that align with the values
and decision-making tendencies of the individual decision-makers. In scenarios where optimal
decisions are unavailable, DMA focuses on modeling the variability in human choices by ensuring
that the model’s decisions align with the attributes that guide each decision-maker (Molineaux et al.,
2024; Sen et al., 2025). By explicitly considering different levels of decision-maker attributes, DMA
provides a framework for creating Al systems that can adapt to differing perspectives and reasoning
patterns.

2.2 Value Alignment vs. Pluralistic Alignment

Value alignment approaches aim to align algorithmic decision-makers with a fixed set of normative
values. Standard methods often employ reinforcement learning from human feedback (RLHF),
where a reward model is trained on human preference data to shape outputs in accordance with
broad values such as honesty, harmlessness, and helpfulness (Ouyang et al., 2022). While effective
at providing coarse reward signals, these methods are limited to static notions of human intent.
To support broader alignability, benchmark datasets like ETHICS enable algorithmic DMs to align
with values such as justice, well-being, virtues, commonsense morality, and duties (Hendrycks
et al., 2021). Shen et al. (2025) further developed ValueCompass to evaluate alignment across real-
world scenarios using 56 value statements from Schwartz’s Theory of Basic Values, highlighting
the variability of values and limitations of static strategies (Shen et al., 2025).

These limitations have motivated more flexible alignment methods. Domain-aware alignment
incorporates ethical principles along with domain-specific knowledge (Shetty et al., 2025; Rauch
et al., 2025), while pluralistic alignment explicitly models cognitive and behavioral variation across
users (Sorensen et al., 2024). Such approaches capture human reasoning variability by aligning
Al systems with personalized mental models, user preferences, and decision styles (Chen et al.,
2025a; Wu et al., 2025). Wu et al. (2025) proposed a dynamic method in which LL.Ms infer and
adapt to user preferences through multi-turn interactions, while Guan et al. (2025) introduced a
unified framework integrating preference memory, feedback-driven refinement, and individualized
generation. Together, these works illustrate a shift from static value alignment toward pluralistic,
context-dependent approaches that better reflect the diversity of human values and decision-making
attributes, particularly for high-stakes algorithmic DMs.

2.3 Classical AI Approaches to Decision-Maker Alignment

While broader types of alignment approaches have been experimented with using expert knowledge,
utility theory, and human-in-the-loop designs (Newell & Simon, 1956; Zhi-Xuan et al., 2024), they
do not address the alignment we focus on here, which is user-specific, context-specific alignment
with decision-making. To date, the only work exploring this practical and individual alignment
using classical Al methods is Molineaux et al. (2024), who developed an algorithmic DM combin-
ing case-based reasoning, Monte Carlo simulation, Bayesian diagnosis, and naturalistic decision-
making and demonstrated improved alignment in simulated military triage scenarios.
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Figure 1. Schematic overview of the dataset structure with example probes, contextual attributes of the
decision-maker, a target decision maker attribute, risk folerance, and four available choices. The ground
truth indicates the most aligned option.

2.4 LLM-Based Approaches to Decision-Maker Alignment

Recent advances in LLMs have expanded the focus of alignment research from explicit knowl-
edge engineering to scalable alignment methods via preference modeling, prompt engineering, and
human feedback (Hu et al., 2024). Unlike classical expert systems, which directly encode domain
rules, LLMs acquire broad decision-relevant knowledge through large-scale pretraining and are then
steered toward alignment with human values using techniques such as reinforcement learning from
human feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022). RLHF emphasizes learning
reward functions from human demonstrations and preferences, enabling models to generate outputs
that are more consistent with human preferences. Using reinforcement learning, methods such as
constitutional Al introduce alignment through explicit normative principles and self-critique tech-
niques (Bai et al., 2022), while iterative preference optimization refines model behavior through
ongoing user interaction (Zeng et al., 2025).

Another line of research involves steerability and controllability frameworks, where alignment is
addressed through prompts, fine-tuning, and policy constraints (Ganguli et al., 2022). This includes
persona-based alignment, in which prompts describing specific personas are used to steer LLMs
toward responses reflective of different demographic or ideological groups (Santurkar et al., 2023;
Hwang et al., 2023). Recent studies have expanded persona-based alignment methods to incorporate
domain-specific attributes for high-stakes scenarios. As demonstrated by Hu et al. (2024), incorpo-
rating decision-maker attribute information directly into prompts, combined with a self-consistency
module to weigh positive and negative samples, significantly improved alignment of LLM-based
algorithmic DMs. Building on their methodology, we develop a LLM-based DM and apply it to a
new domain, enabling a systematic comparison of both classical Al and LLM-based approaches.

2.5 Dataset

One major challenge in decision-maker alignment is the lack of adequate datasets that capture con-
text, target decision-makers, and their influences. To address this, Sen et al. (2025) created a
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health insurance benchmark dataset designed to train and evaluate algorithmic decision-makers.
The dataset simulates dilemmas individuals face when selecting health insurance plans under un-
certainty, comprising 20 cost-related probes derived from real plan specifications (e.g., deductibles,
out-of-pocket maximums, specialist visits), each paired with alternative plan options in integer dol-
lar amounts.

Decision-maker behavior is characterized by two cognitive attributes: risk tolerance and choice,
each labeled as high or low, yielding four possible combinations. Risk tolerance captures willing-
ness to accept risk (e.g., selecting lower premiums with higher deductibles), while choice reflects
preferences for the number of alternatives for services. In addition to decision-making attributes, the
dataset incorporates contextual features such as family composition, medical history, employment
type, and lifestyle factors (e.g., sports participation, chronic conditions) to describe the scenarios.
Each instance includes four plan options, a labeled attribute, and the ground-truth choice aligned
with the target decision-maker.

3. Methodology

In this section, we first outline the classical alignment approach used in our work. We then introduce
our LLM-based alignment method, followed by a description of the evaluation framework used to
assess alignment in the algorithmic decision-maker responses across both approaches. Our hypothe-
sis is that the two approaches will achieve similar levels of alignment. We then present experimental
results comparing the alignment achieved by each approach across different target profiles.

3.1 Dataset

Sen et al. (2025) created a health insurance dataset for four target decision-maker types. For our
experiments, we aimed to capture all variations of target attribute levels and explicitly model the
effect of risk tolerance on individual decisions. Specifically, for each probe and each possible plan
option, we sought to determine the level of risk tolerance that would be associated with a decision-
maker selecting that option.

For all probes and decisions, the original dataset defined four attribute combinations, low—low,
low—high, high—low, and high—high, which corresponded to 0.01, 0.34, 0.67, and 1.0, respectively.
Using these four attribute values, we created a regression neural network that computed risk toler-
ance levels for all probes across all alternative choices. Figure 1 presents a schematic overview of
the dataset, highlighting example probes and contextual features.

The original dataset contained 32,000 probes, with 24,000 associated with risk tolerance and
8,000 associated with choice. Because choice probes were less explicit, we excluded them from
our experiments. This exclusion introduced duplicates, as the only distinguishing feature for many
probes was the choice attribute. After removing duplicates, 17,400 distinct probes remained. From
this set, we randomly sampled 5,000 probes for training and 1,000 probes for testing. To evaluate
alignment, we instantiated three synthetic targets, Chad, Brie, and Alex, with risk tolerance levels of
1.0 (highly risk-tolerant), 0.5 (moderately risk-tolerant), and 0.0 (highly risk-averse), respectively.
Because ground-truth choices differ by target, the full set of probes was administered three times,
once per target. This design allowed us to assess model performance across distinct risk preferences
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and provided a controlled framework to analyze how decision-making behavior varies with target
risk tolerance.

3.2 Classical algorithmic DM

In this work, we employ the model proposed by Molineaux et al. (2024) as a classical Al algorith-
mic DM. This model uses scenario features formalized through four components: probes p € P,
representing decision environments, decisions y € Y, which include all the possible actions, contex-
tual categories C'C', which describe features of the scenario, and decision-maker attributes u € U,
which include the decision-making values influencing the decision process. The model functions
in two phases: during offline training, it builds a case base by generating candidate decisions for
each probe, evaluating them with Monte Carlo simulations, Bayesian reasoning, and heuristic-based
rationalizers, and linking these decisions to target decision-makers. In the online stage, when new
probe and target information are provided, it creates and analyzes the possible decisions, searches
for similar cases in the case base using learned similarity weights, and selects the action that most
closely aligns with the specified profile. This process enables the model to approximate diverse
human decision-making styles in high-stakes environments where no single optimal decision exists.
The high-level pseudocode for this algorithm is presented in Algorithm 1.

Algorithm 1 Classical algorithmic DM for Aligned Decision-Making
Input: Probe p with context x, target DM dm, target DM attribute value dma
Output: Aligned Decision consistent with the target decision-maker

Offline Training Subsystem:
foreach p with known decision do
PossibleDecisions < DecisionSpaceElaboration(p) // Get possible decisions
decisionAnalytics <— DecisionAnalysis(PossibleDecisions)
targetInfo <+ targetDetectionFunction(p, decision)
case <— (p, decision, decisionAnalytics, targetInfo)
Add case to AlignmentCaseBase
weights <— AlignmentWeightLearning(AlignmentCaseBase)

Online Decision-Making Subsystem:

foreach new probe do
PossibleDecisions < DecisionSpaceElaboration(p)

decisionAnalytics <— DecisionAnalysis(PossibleDecisions)

foreach decision d € PossibleDecisions do
casey < (p, d, decisionAnalytics, TargetInfo)

neighbors < RetrieveNearestNeighbors(casey, AlignmentCaseBase, weights)
estimatedTarget <— Weighted Average(neighbors)

alignedDecision < arg m;n estimatedTarget — targetInfo‘

return alignedDecision
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3.3 LLM-Based algorithmic DM

We use a large reasoning model, GPT-5™ (OpenAlI, 2025), and a large language model, GPT-4™
(OpenAl, 2024) via the OpenAl API, configured with a temperature of 0.7 to evaluate their capac-
ity for alignment with cognitive attributes across diverse decision-making scenarios. To create an
aligned LLM-based DM, we implement the methodology introduced by Hu et al. (2024), origi-
nally developed for context-aligned decision-making in the medical triage domain. This framework
operationalizes alignment of algorithmic DMs by associating decisions with key decision-maker
attributes such as utilitarianism, fairness, and risk aversion.

Algorithm 2 LL.M-Based Algorithmic DM with weighted self-consistency as proposed by Hu et al.

Input: LLM/LRM, Dataset D (context x, question ¢, choices C, target DM dm, target DM attribute
value dma), target-aligned Prompts P

Output: Aligned decision consistent with the target decision-maker

foreach (z,q,C,dm,dma) € D do
Initialize vote counts V'[c] «— 0 for each ¢ € C

Weighted Self-Consistency Sampling:

(1) Positive Sampling: Target DM
for N =1t05do
prompt™ < FormatPrompt(z, q, C, Pldm|[dma])
respt < QueryLLM (model, prompt™, temperature = 0.7)
ans™ < ExtractAnswer(resp™)
Vianst] < Vians™] +1

(2) Negative Sampling: Inverse DMs
Determine inverse (non-target) DMs: neg_targets <— {Alex, Chad, Brie} \ {dm}
Randomly choose allocation pattern: (ni,n2) < (2,3) or (3, 2)

for each (invDM, ninypy) in zip(neg_targets, [n1,n2]) do
for N =1 to njmwpy do
prompt~ <  FormatPrompt(x,q,C, PlinvDM][dma]) // Use inverse DM
prompt
resp” < QueryLLM(model, prompt—, temperature = 0.7)
ans~ < ExtractAnswer(resp™)
Vians™] < V]ans™] — 1

Final Aggregation:
alignedDecision < arg max.cc V|c|
return alignedDecision

Each experimental scenario includes a contextual description and a decision-making question,
along with all possible answer choices. We create three individual prompts, each aligned with a
specific target decision-maker. For each probe, these prompts are presented separately to the three
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Scenario Probe: You are evaluating
insurance options for a salaried
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children and owns their home. Last
year, they had 10 medical visits.
Plans differ in premiums,
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Figure 2. Implementation of classical Al and LLM-based algorithmic DMs, where both models receive a
scenario probe and output a final decision. The final decision must be aligned with the decision made by a
target decision-maker of same risk level. The classical Al algorithmic DM relies on prior cases, while the
LLM-based DM uses zero-shot prompting and self-consistency sampling for aligned decision-making.

targets, Chad, Alex, and Brie, and the model selects the decision corresponding to the assigned
target profile. For each scenario, the model is first given a scenario prompt outlining the structure
and salient features of the task. We then apply a zero-shot prompting strategy for target-specific
alignment prompts, designed to steer the model’s response toward the target attribute value.

Additionally, we integrate the weighted self-consistency module (Hu et al., 2024; Wang et al.,
2023), allowing the model to stabilize its decision tendencies across multiple generations while
preserving context sensitivity. This process involves issuing multiple queries under both positive
prompts (aligned with the target attribute) and negative prompts (aligned with the opposite target at-
tribute), producing a diverse set of candidate responses across multiple runs. We drew N=5 samples
for the positive target, and for N=5 for the negatives. Since our experiment had three targets, we split
the negative samples randomly. For instance, if Brie was the positive target, we generated 5 positive
samples using the prompt aligned to Brie, and randomly generated 2 samples using Alex-aligned
prompt and 3 using Chad-aligned prompt, which were given negative weights. The final decision is
determined via a weighted majority voting scheme, which emphasizes responses consistent with the
target DM attribute while down-weighting outputs generated by negative prompts. This mechanism
reduces stochastic variability and ensures that the generated decisions are explicitly conditioned on
the intended risk tolerance levels. The high-level pseudocode for this approach is presented in Al-
gorithm 2. Figure 2 illustrates the distinct decision-making pipelines of classical and LLM-based
algorithmic DM approaches in our implementation.

3.4 Evaluation Metric

To evaluate model predictions, we measured alignment between model-generated actions and the
ground-truth decisions of the three targets,Alex, Brie, and Chad. For each target, an action was
assigned a value of 1 if it matched the corresponding ground-truth decision (aligned) and O otherwise
(misaligned).
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Formally, for each scenario, let gd be the ground-truth decision for a given risk tolerance value
dma, and let alignedDecision be the model’s predicted decision for the same level of risk toler-
ance. The alignment score is computed as:

1 if gd = alignedDecision

a(gd, alignedDecision,dma) = )
0 otherwise

We evaluate model performance using two levels of accuracy:

* Individual Target Accuracy: Alignment is measured separately for each target (Alex, Brie,
and Chad), capturing performance for different levels of risk tolerance. Formally, for a target
dm:

1 . .
Agarger(dm) = D Z a(gd, alignedDecision, dma),
(z,q,C,dma)€D

where |D| is the total number of probes, (z,q,C,dma) € D denotes each probe with its
context x, question g, choice set C', and decision-making attribute dma. The function a gives
a score of 1 if the model’s predicted action aligned Decision matches the ground truth gd for
target attribute dma, and O otherwise.

* Overall Accuracy: To summarize performance over the entire dataset, we average across all
probes and targets:

1
Avotal = DIx3 E E a(gd, alignedDecision, dma)
‘ ‘ x dma€e{0,0.5,1} (z,q,C,dma)eD

4. Results and Discussion

In this section, we report results for both decision-making paradigms. The primary findings are
summarized in Figure 3 and Table 1. Across all models, alignment accuracy was very similar;
however, the GPT-5-based algorithmic DM achieved the highest overall performance across the
dataset.

4.1 Comparison of Classical AI and LLM-Based Algorithmic DMs

Our experiments demonstrated comparable overall performance between the classical Al algorith-
mic DM and the two LLM-based DMs, with all three models achieving nearly identical alignment
accuracy, as shown in Table 1. Both approaches performed best for the target with the lowest level
of risk tolerance, showing near-perfect alignment, suggesting that the models effectively capture the
deterministic patterns associated with highly risk-averse decision-making in our dataset. Although
the LLM-based algorithmic DMs achieved near-perfect alignment for the two extreme targets when
using weighted self-consistency, their accuracy dropped for the target with a moderate level of risk
tolerance, whereas the classical Al algorithmic DM maintained relatively good alignment in this
middle range. This suggests that, despite comparable overall accuracy, the classical Al algorithmic
DM exhibits more stable performance across distinct decision-maker profiles, while the LLM-based

93



CLASSICAL Al vs. LLMS

0.998 0.993 0.993
1.0 4 0.976 0.974

0.873

0.805
0.8 1

0.715 ¢.707

o
o
L

Classical Al algorithmic DM
LRM-based algorithmic DM (GPT-5)
LLM-based algorithmic DM (GPT-4)

Alignment Accuracy

=]
S
L

0.2 4

0.0 T T T
Alex Brie Chad

Figure 3. Performance of the three models across three targets with varying risk tolerances (Alex: 0, highly
risk-averse; Brie: 0.5, moderately risk-averse; Chad: 1.0, risk-tolerant). Bars indicate individual target
alignment accuracy, and the legend denotes the model.

DMs struggle to generalize alignment in intermediate or ambiguous risk scenarios where trade-offs
between cost and quality are less explicit.

As all three models demonstrated the highest alignment with the target having the lowest risk
tolerance attribute value 0.0, followed by the high-risk target with attribute value of 1.0, these find-
ings allow us to conjecture that both classical Al and LLM-based approaches may be learning from
the data in similar ways, although they rely on fundamentally different mechanisms. The classical
Al algorithmic DM relies explicitly on task-specific training data, whereas the LLM-based DM,
despite not using any targeted fine-tuning, implicitly leverages its vast pretraining corpus and web-
scale knowledge. This raises an important question: if we were to fine-tune or provide high-quality,
domain-specific training data to the LLM, particularly for the moderate-risk target, which exhibited
the lowest alignment, would its performance improve, or would it continue to depend primarily on
its internal priors and pretraining biases? Future work will explore this direction through experi-
ments that constrain the LLM-based DM to reason solely from structured, domain-specific inputs
rather than its broader pretrained knowledge base.

From a methodological perspective, both paradigms present distinct advantages and limitations.
The key advantage of LLM-based algorithmic DMs lies in their accessibility, as the intelligent rea-
soning component is already built in, allowing us to focus primarily on the experimental design
and prompt formulation rather than developing a task-specific algorithm from scratch. However,
this also introduces a critical limitation: the effectiveness of LLM-based DMs depends heavily on
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Table 1. Overall alignment accuracy for the three algorithmic DMs.

Algorithmic DM Overall Accuracy
Classical AI Algorithmic DM 0.892
LRM-Based Algorithmic DM (GPT-5) 0.895
LLM-Based Algorithmic DM (GPT-4) 0.892

how well human language can represent nuanced cognitive constructs. For example, describing a
moderate risk target (0.5) without overlapping linguistic cues from the extreme targets (0.0 and 1.0)
is inherently difficult, raising the question of whether this limitation stems from the prompt itself
or from the expressive boundaries of natural language. This limitation is particularly significant be-
cause representing all levels of cognitive attributes is essential to create alignable algorithmic DMs,
since the literature in cognitive science consistently shows that human decision-making patterns, bi-
ases, and cognitive traits are highly nuanced and rarely confined to extremes. Capturing this middle
ground is crucial for modeling realistic decision behavior and ensuring fine-grained alignment.

In contrast, classical Al algorithmic DMs allow alignment to be measured at a finer, more gran-
ular level. Rather than being restricted to three discrete targets, the classical DM can operationalize
risk tolerance by defining targets at every 0.1 interval between 0 and 1, allowing us to study align-
ment at a finer level of granularity. This flexibility enables systematic exploration of the decision
space, which LLMs, constrained by linguistic representation, would struggle to replicate. Addition-
ally, variation in classical systems can be achieved through algorithmic modifications, while LL.Ms
are largely limited to prompt tuning or model selection. The finding that both GPT-4 and GPT-5
achieved comparable alignment further suggests that this task may not require complex reasoning
capabilities, as the non-reasoning model was successfully able to align the model’s decisions with
targets using weighted self-consistency.

4.2 Challenges in Comparing Classical AT and LLM-Based Algorithmic DMs

Comparing alignment performance between classical Al methods and LLM-based models presents
inherent challenges. A key limitation lies in ensuring a fair comparison, as the type and amount of
input data differ fundamentally across the two approaches. The LLM receives unstructured, natu-
ral language prompts with contextual cues, whereas the classical Al model operates on structured
numerical features. This asymmetry means that even if both systems process equivalent decision
scenarios, the nature of their input information and representational capacity is inherently different.
Another challenge arises from variability in LLM outputs. LLMs exhibit stochasticity due to tem-
perature and sampling parameters. To address this, we implemented a weighted self-consistency
module, allowing the model to stabilize its decision tendencies across multiple generations while
preserving context sensitivity.

Overall, these challenges highlight the trade-off between structure and adaptability in alignment
research: classical Al algorithmic DMs offer structural stability and consistency, while LLM-based
DMs provide contextual adaptability but require robust mechanisms to manage variability and en-
sure fair evaluation.
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5. Conclusions and Future Work

In this work, we compared one classical Al and two LLM-based algorithmic decision-makers in
a health insurance domain, investigating their ability to align to three targets with three levels of
risk tolerance. Our findings reveal complementary strengths: LLM-based algorithmic DMs enable
flexibility through prompt engineering to capture contextual cues for diverse targets, while classical
approaches allow for more variations in granularity and maintain consistency across targets. Exper-
imental results demonstrate that both classical Al and LLM-based DMs can be designed to align
with different target decision-makers. Moreover, our successful reimplementation of the methodol-
ogy proposed by Hu et al. on a different dataset further validates the robustness of their approach.

While we closely followed Hu et al.’s methodology for the LLM-based implementation, several
limitations remain. First, adapting the prompt structure to a new domain (health insurance) may
introduce variability that affects comparability with prior work. Moreover, our study employs a
different set of LLMs (GPT-4 and GPT-5), which differ in architecture and reasoning behavior from
the models used in their work, potentially influencing alignment outcomes. Second, we did not
vary parameters within the weighted self-consistency framework, which could reveal more nuanced
relationships between prompt design and decision alignment. Additionally, our experiments relied
on a static dataset rather than multiple iterative samples, which may limit the generalizability of the
findings. Future work will address this by evaluating the average performance across multiple itera-
tions. Moreover, while our experiment focused solely on risk tolerance, human decision-making is
shaped by a rich interplay of cognitive attributes, such as ambiguity aversion, temporal discounting,
and self-control, that exist on a continuum rather than at extremes. Capturing this full spectrum will
be crucial for building alignable models in future studies.

For LLM-based algorithmic decision-makers, a key direction of investigation involves examin-
ing the limitations of natural language prompting itself. Specifically, we plan to explore prompting
strategies that can represent nuanced cognitive attributes, such as moderate levels of risk tolerance,
without relying on linguistic repetition or extreme descriptors. This raises a broader question about
the inherent granularity and expressiveness of natural language as a medium for defining decision-
making attributes.

Acknowledgements

This research was conducted as part of the In the Moment (ITM) project, supported by the De-
fense Advanced Research Projects Agency (DARPA) under contract number HR001122S0031. The
views, opinions and/or findings expressed are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.
The authors also thank the reviewers for their insightful feedback, which helped improve the clarity
and impact of this work.

References

Bai, Y., et al. (2022). Training a helpful and harmless assistant with reinforcement learning from
human feedback. arXiv.

96



M. MAINALI ET AL.

Chen, D., Chen, Y., Rege, A., Wang, Z., & Vinayak, R. K. (2025a). Pal: Sample-efficient personal-
ized reward modeling for pluralistic alignment. Proceedings of the International Conference on
Learning Representations (ICLR), Poster.

Chen, X., Wang, S., Qian, C., Wang, H., Han, P., & Ji, H. (2025b). Decisionflow: Advancing large
language model as principled decision maker. ArXiv, abs/2505.21397.

Chermack, T. J. (2003). Mental models in decision making and implications for human resource
development. Advances in Developing Human Resources, 5, 408-422.

Christian, B. (2020). The alignment problem: Machine learning and human values. New York, NY,
USA: W. W. Norton & Company.

Christiano, P. F.,, Leike, J., Brown, T. B., Martic, M., Legg, S., & Amodei, D. (2017). Deep rein-
forcement learning from human preferences. Proceedings of the 31st International Conference
on Neural Information Processing Systems (NeurlPS). Long Beach, CA, USA.

Fox, S. (2024). Adaptive ai alignment: Established resources for aligning machine learning with
human intentions and values in changing environments. Machine Learning and Knowledge Ex-
traction, 6, 2570-2600.

Ganguli, D., et al. (2022). Red teaming language models to reduce harms: Methods, scaling behav-
iors, and lessons learned. arXiv.

Guan, J., Wu, J., Li, J.-N., Cheng, C., & Wu, W. (2025). A survey on personalized Alignment-The
missing piece for large language models in real-world applications. Findings of the Association
for Computational Linguistics: ACL 2025 (pp. 5313-5333). ACL.

Hendrycks, D., Burns, C., Basart, S., Critch, A., Li, J., Song, D., & Steinhardt, J. (2021). Aligning
ai with shared human values. International Conference on Learning Representations (ICLR).

Hu, B., et al. (2024). Language models are alignable decision-makers: Dataset and application to
the medical triage domain. Proceedings of the 2024 Conference of the North American Chapter
of the ACL: Human Language Technologies (Volume 6: Industry Track) (pp. 213-227). ACL.

Hwang, E., Majumder, B., & Tandon, N. (2023). Aligning language models to user opinions.
Findings of the Association for Computational Linguistics: EMNLP 2023 (pp. 5906-5919). ACL.

Jiang, L., et al. (2022). Can machines learn morality? the delphi experiment. arXiv.

Liu, O., Fu, D., Yogatama, D., & Neiswanger, W. (2024). Dellma: Decision making under uncer-
tainty with large language models. International Conference on Learning Representations.

Mainali, M., & Weber, R. O. (2025). Exploring cognitive attributes in financial decision-making.
Second Workshop on Metacognitive Prediction of Al Behavior. Presented at METACOG-25,
SIAM International Conference on Data Mining (SDM25), Published by IEEE Computer Society.

Molineaux, M., et al. (2024). Aligning to human decision-makers in military medical triage. Case-
Based Reasoning Research and Development (pp. 371-387). Springer Nature Switzerland.

Newell, A., & Simon, H. (1956). The logic theory machine—a complex information processing
system. IRE Transactions on Information Theory, 2, 61-79.

OpenAl (2024). Gpt-4 technical report. arXiv.

97



CLASSICAL Al vs. LLMS

OpenAl  (2025). Introducing  gpt-5. https://openai.com/index/
introducing-gpt—-5/. Accessed: 2025-10-06.

Ouyang, L., et al. (2022). Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 35, 27730-27744.

Rauch, C. B., Molineaux, M., Mainali, M., Sen, A., Floyd, M. W., & Weber, R. O. (2025). Role-
based ethics for decision-maker alignment. Proceedings of the IEEE Conference on Artificial
Intelligence, Workshop on Human Alignment in Al Decision-Making Systems (HAADMS).

Ravichandran, B., Joy, D., Elliott, P., Hu, B., Adams, J., Funk, C., Veenhuis, E., Hoogs, A., &
Basharat, A. (2025). ALIGN: Prompt-based Attribute Alignment for Reliable, Responsible, and
Personalized LLM-based Decision-Making. ICML Workshop on Reliable and Responsible Foun-
dation Models.

Santurkar, S., Durmus, E., Ladhak, F,, Lee, C., Liang, P., & Hashimoto, T. (2023). Whose opinions
do language models reflect? Proceedings of the 40th International Conference on Machine
Learning. Honolulu, Hawaii, USA: PMLR.

Sen, A., Weber, R. O., Rauch, C. B., Mainali, M., Turner, J., Meyer, J., Floyd, M. W., & Molineaux,
M. (2025). Decision-maker alignment: Benchmark datasets. 2025 IEEE Conference on Artificial
Intelligence (CAI) (pp. 1221-1229).

Shen, H., Knearem, T., Ghosh, R., Yang, Y.-J., Clark, N., Mitra, T., & Huang, Y. (2025). Val-
uecompass: A framework for measuring contextual value alignment between human and llms.
arXiv.

Shetty, A., Beheshti, A., Dras, M., & Naseem, U. (2025). VITAL: A new dataset for benchmarking
pluralistic alignment in healthcare. Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers) (pp. 22954-22974). ACL.

Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics,
69, 99-118.

Sorensen, T., et al. (2024). Value kaleidoscope: engaging ai with pluralistic human values, rights,
and duties. Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and
Thirty-Sixth Conference on IAAI. AAAI Press.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science,
185, 1124-1131.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., & Zhou, D. (2023).
Self-consistency improves chain of thought reasoning in language models. arXiv.

Wu, S., Fung, Y. R., Qian, C., Kim, J., Hakkani-Tur, D., & Ji, H. (2025). Aligning LL.Ms with
individual preferences via interaction. Proceedings of the 31st International Conference on Com-
putational Linguistics (pp. 7648-7662). ACL.

Zeng, Y., et al. (2025). Evolving llms’ self-refinement capability via iterative preference optimiza-
tion. arXiv preprint arXiv:2502.05605v3 [cs.CL].

Zhi-Xuan, T., Carroll, M., Franklin, M., & Ashton, H. (2024). Beyond preferences in ai alignment.
Philosophical Studies, 182, 1813-1863.

98


https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/

