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Abstract
Current advances in AI and its applicability have highlighted the need to ensure its trustworthiness
for legal, ethical, and even commercial reasons. Sub-symbolic machine learning algorithms, such
as the LLMs, simulate reasoning but hallucinate and their decisions cannot be explained or audited
(crucial aspects for trustworthiness). On the other hand, rule-based reasoners, such as Cyc, are able
to provide the chain of reasoning steps but are complex and use a large number of reasoners. We
propose a middle ground using s(CASP), a goal-directed constraint-based answer set programming
reasoner that employs a small number of mechanisms to emulate reliable and explainable human-
style commonsense reasoning. In this paper, we explain how s(CASP) supports the 16 desiderata
for trustworthy AI introduced by Doug Lenat and Gary Marcus (2023), and two additional ones:
inconsistency detection and the assumption of alternative worlds. To illustrate the feasibility and
synergies of s(CASP), we present a range of diverse applications.

1. Introduction

Although incredible advancements in artificial intelligence (AI) have been made, robustness in AI
systems is still lacking. The recent AAAI study by Rossi & et al. (2025) found that a “majority
of respondents (76%) assert that ‘scaling up current AI approaches’ to yield AGI is ‘unlikely’ or
‘very unlikely’ to succeed, suggesting doubts about whether current machine learning paradigms
are sufficient for achieving general intelligence”. Despite that, the predominant approach towards
AI remains pouring more resources, such as data, training time, and GPUs, into generative AI in
order to produce marginally better results. We argue that what is necessary is not larger and more
robust neural networks, but rather the encoding of commonsense knowledge alongside a capable
reasoner. In this paradigm, deep learning becomes a tool for a reasoner to interface with, not an
entity in itself.

Researchers have agreed since the inception of AI that commonsense knowledge and reasoning
are important for the field. There are two fundamental components in commonsense reasoning: the
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knowledge base, containing all the commonsense knowledge about the problem domain, and the
commonsense reasoner, which processes that knowledge to draw new conclusions.
Sub-symbolic vs. symbolic AI: The first part, the knowledge base, almost universally poses a
problem for modern deep learning methods. In deep learning, knowledge is extracted from huge
amounts of data. It is impossible to perform any reasonable quality assurance at the required scale.
This problem is being tackled by improving the ability to train on small datasets and through the
use of services like Amazon’s Mechanical Turk to label large quantities of data with inexpensive
labor. Using data that is not labeled or evaluated for quality tends to lead to difficulty with reason-
ing in these systems. In some domains, a strong foundational knowledge base is almost inherently
machine-usable; however, in others the translation from knowledge to reasoning is more difficult.
Deep learning systems are incredibly robust to ingesting large quantities of data, but they do not
reason and are prone to errors that would not be made by a system with sound commonsense knowl-
edge. On the other hand, logic-based symbolic reasoners struggle with representing and efficiently
processing large amounts of knowledge. A combination of deep learning and logic-based reason-
ing, a neuro-symbolic system, performs better on key metrics like explainability without sacrificing
performance, see survey by Yu et al. (2023). Overall, systems that combine a robust knowledge
base with a reasoner designed to utilize it, perform the best. The problem is far from solved though,
as brittleness of the logic-based knowledge base and commonsense reasonng remains a challenge.
Cyc, a machine reasoner: One of the oldest attempts to use commonsense knowledge is the Cyc
project. Cyc seeks to encode all commonsense knowledge into a knowledge base following its own
proprietary ontology (Lenat, 1995). For four decades the Cyc knowledge base has grown, gaining
hand-crafted and hand-categorized axioms of knowledge covering every imaginable subject and
ambiguity in the hopes of using that knowledge to cultivate true human-like intelligence.

However, outside of Cycorp the reception of Cyc has been lukewarm. Cyc’s philosophy has
not pervaded AI research, possibly due to Cyc being a closed system, and deep learning-based
AI research has moved to the forefront. Many of Cyc’s critics use it as an example to prove that
symbolic AI is doomed for failure. However, as we look to the next steps for AI beyond deep
learning, other symbolic approaches solve some of its greatest weaknesses and show promise for
the future. We posit that purely deep learning systems require symbolic intervention to improve
their trustworthiness. Explainability is fundamentally important for AI systems that are trustworthy
enough for critical use.
LLMs and Trustworthiness: Recent work by Lenat & Marcus (2023) discusses what is needed
for truly trustworthy AI. The paper argues that Large Language Models (LLMs) are untrustworthy,
unstable, and brittle, something that has continued to prove true as LLMs have become more and
more ubiquitous. They posit that generative AI systems fail because they do not reason, but rather
are very sophisticated pattern matching algorithms. They argue that LLMs would need to pair up
with a system like Cyc to become trustworthy. However, Cyc is a complex and proprietary system.
Answer Set Programming: For symbolic reasoning systems to succeed, simplicity must be paramount.
The answer set programming (ASP) paradigm has shown how commonsense knowledge can be rep-
resented and reasoned over in an elegant way (Brewka et al., 2011; Gelfond & Kahl, 2014; Gupta
et al., 2022). Implementations of ASP such as the CLINGO system (Gebser et al., 2014), however,
have a problem, namely, that they are based on grounding the program and then using a SAT solver
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or a procedure inspired by SAT to find answer sets. Thus, they do not scale well and are primarily
used to solve combinatorial problems rather than large knowledge-based reasoning problems. To
alleviate this, we propose to model commonsense reasoning with goal-directed ASP engines, which
do not ground programs and support constructive negation, giving rise to what we have termed
goal-directed commonsense reasoning. In particular, we propose the use of s(CASP), of which
we provide a brief review in Section 2.

Addressing 16+2 Desiderata: This paper provides a structured argument that s(CASP) plausibly
satisfies the desiderata established by Lenat & Marcus (2023) as capabilities required by general
AI to be trustworthy. We also discuss additional desiderata that a (goal-directed) commonsense
reasoning system must satisfy: (i) being able to specify inconsistencies via global constraints, and
(ii) being able to incorporate assumptions through multiple possible worlds. The s(CASP) system
incorporates these additional desiderata. Given the simplicity of s(CASP), the fact that it is open-
sourced, and that it can support all the desiderata, we present it as a publicly available system for
building trustworthy AI in conjunction with machine learning. These 16+2 desiderata are reviewed
in Section 3 with a brief description, related s(CASP) capabilities, and a discussion of related work.
The main contribution of this paper is to organize the capabilities of s(CASP), and present some of
its applications in terms of the desiderata for trustworthy AI.

2. Background: s(CASP)

s(CASP), by Arias et al. (2018), is a novel non-monotonic reasoner that evaluates Constraint An-
swer Set Programs without a grounding phase either before or during execution. s(CASP) supports
predicates and thus retains logical variables (and constraints) both during the execution and in the
answer sets. The operational semantics of s(CASP) rely on backward chaining, which is intuitive to
follow and lends itself to generating explanations that can be translated into natural language (NL).
The execution of an s(CASP) program is goal-directed (i.e., starts with a query), and returns par-
tial stable models: the subsets of the stable models, defined by Gelfond & Lifschitz (1988), which
include only the positive or negative literals necessary to support the initial query. Any computed
bindings for unbound variables in the query are also returned. The s(CASP) system supports first
order predicates and terms, constructive negation, and coinduction. More details on s(CASP) are
not included due to lack of space, but they can be found elsewhere (Arias et al., 2018; Gupta et al.,
2022). s(CASP) has been used for many applications related to the representation of commonsense
reasoning (including commercial ones as in Forsante Oy (2024)). We outline the ones below that
are crucial for this paper:
VECSR: Virtually Embodied Common Sense Reasoning (VECSR) by Tudor et al. (2025) is a sys-
tem that accepts high-level tasks and uses s(CASP) to plan and execute those tasks in a context-
aware fashion in VirtualHome, a fully-embodied simulated environment.
Reliable Chatbots: In the Amazon Alexa Socialbot Grand Challenge 4, Basu et al. (2021b) de-
veloped a conversational AI chatbot based on two natural language understanding systems by Basu
et al. (2021a). Going further, Zeng et al. (2024) used LLMs to translate natural language into pred-
icates (and vice versa) and employ commonsense reasoning based on s(CASP) to build a reliable
task-bot as well as a socialbot to hold a social conversation with a human.
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Event Calculus (EC): A reasoner on EC by Arias et al. (2022a) has been used by Hall et al.
(2021) to model real-world avionics systems, verify timed properties, and identify gaps in system
requirements, and by Vašíček et al. (2024) to model a medical device.
Justification in NL: Has been used by Arias et al. (2020) and Chen et al. (2016) to bring eXplain-
able Artificial Intelligence (XAI) principles to expert knowledge systems.
ILP systems: Inductive Logic Programming (ILP) systems generate logic programs from data. This
includes the FOLD family of algorithms, the latest of which is FOLD-SE by Wang & Gupta (2024)
that learns stratified answer set programs.
s(LAW): An administrative and judicial discretion reasoner by Arias et al. (2024a), which allows
modeling of legal rules involving ambiguity to infer conclusions and provides natural language
justifications for those conclusions.
Spatial reasoner: Implemented by Arias et al. (2022c), it models dynamic information and restric-
tions in Building Information Modeling (BIM) and paves the way to using logic-based methodolo-
gies such as model refinement.

3. Addressing 16+2 desiderata with s(CASP)

The 16 desiderata for trustworthy AI are described in detail by Lenat & Marcus (2023), and so this
section will only briefly summarize them. Table 1 indicates how various AI systems accomplish the
desiderata for reference. For each of the 16+2 desiderata, we provide examples of how the s(CASP)
system fulfills them. In some applications used for illustration, we describe how we successfully
combine machine learning and s(CASP)-based automated commonsense reasoning with a goal of
achieving human-level intelligence at least for domain-specific tasks.

#01 Explanation: Explainability is a commonly desired trait of AI, stating that any trustworthy
AI must be able to explain any solution found. Its importance is reflected in the growing field of
XAI.

s(CASP): Goal-directed execution means that one poses queries that are answered by an SLD-
resolution-like process, similar to Prolog, and therefore, a proof is explicitly constructed. This
proof constitutes not only the explanation but also the justification of a given decision (positive or
negative). In s(CASP), the justification for any query is the trace of the successful derivation, or in
cases where the query fails, is the trace of the negated query. Moreover, the framework developed by
Arias et al. (2020) allows the generation of justifications in natural language and navigable HTML
files. Thus, explainability is native to s(CASP) and has been exploited in applications such as the
physician advisor for chronic heart failure management by Chen et al. (2016) and by Forsante Oy
(2025).

Discussion: One of the great weaknesses of deep learning systems is that they are unexplainable
black boxes, where it is difficult to justify a solution. The closest LLMs get is that they can be asked
“why” an answer was given, but the explanation provided may be for a different alternative solution
or the justification itself may be a hallucination.

#02 Deduction: A foundational aspect of trustworthy AI is its capacity for human-like deduction,
encompassing logical reasoning (e.g., modus ponens), arithmetic operations, exhaustive search,
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Table 1: Desiderata support by Cyc, Deep-Learning, and s(CASP). Including s(CASP) features with citation.

Cyc DL
s(CASP)

Feature / Tool

#01 Explanation ✓ ✗ ✓ Justification Trees[1]

#02 Deduction ✓ ! ✓ Base s(CASP)[2]

#03 Induction ! ! ✓ Default Rules + FOLD[3]

#04 Analogy ! ! ! Proposed LLM + s(CASP)
#05 Abductive Reasoning ✓ ✗ ✓ Abducibles[2]

#06 Theory of Mind ✗ ✓ ✓ Chatbot[4]

#07 Quantifier-fluency ✗ ✗ ✓ Goal-Directed Execution[2]

#08 Modal-fluency ✓ ✓ ✓ Deontic Logic[5]

#09 Defeasibility ✓ ✓ ✓ Default Rules + FOLD[3]

#10 Pro and Con Arguments ✓ ✗ ✓ ASP Multiple Worlds[6]

#11 Contexts ✓ ✗ ✓ VECSR[7]

#12 Meta-knowledge and Meta-reasoning ✗ ✗ ✓ Justification Trees[1]

#13 Explicitly Ethical ! ✗ ✓ Constraints[2]

#14 Sufficient Speed ✗ ! ✓ VECSR[7]

#15 Sufficiently Lingual and Embodied ✗ ✓ ✓ Chatbot[4]

#16 Broadly and Deeply Knowledgeable ✗ ! ✓ FOLD, Chatbot, VECSR[3,4,7]

#17 Inconsistency Detection ! ✗ ✓ Constraints[2]

#18 Multiple Possible Worlds ! ✗ ✓ ASP Multiple Worlds[6]

Note: ✓ means fully accomplished, ! means partially accomplished, and ✗ means non-achieved.
[1] Arias et al. (2020), [2] Arias et al. (2018), [3] Wang & Gupta (2024), [4] Zeng et al. (2024),

[5] Gupta et al. (2025), [6] Gelfond & Lifschitz (1988), [7] Tudor et al. (2025)

and the identification of contradictions or redundancies. This includes understanding logical con-
nectives, in particular recognizing different forms of negation, i.e., not being able to conclude p is
different from being able to conclude p is false.

s(CASP): Deduction is the basis of symbolic systems based on logic. Given premises p and
p =⇒ q, we deduce q. Suppose we are given the premises that Tweety is a bird, bird(tweety), and
the formula ∀ X. bird(X) =⇒ flies(X). From these two premises, we can deduce that flies (tweety)
holds, i.e., Tweety can fly. Constraint Programming adds declarative arithmetic processing to logic
programming. The mortgage example by Holzbaur (1995) allows us to reason about the rela-
tion among the principal, P, the repayment rate, Mp, and the balance owing, B, i.e., the query
?– mortgage(P,12„0.01,B,Mp) returns P = 6.14*R + 0.38*B. Finally, to deal with negation as failure
(or default negation) when we lack evidence, the stable model semantics of Gelfond & Lifschitz
(1988) is required, e.g., the rules p :– not q1 and q :– not p, have two stable models {p} and {q}.
The stable model semantics can be realized via answer set programming (ASP). ASP also incor-

1. P :– Q expresses the premise Q =⇒ P.
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porates classical (or strong) negation in addition to default negation, e.g., − flies (X) :– penguin(X)
means that X does not fly if it is a penguin (fly (X) is definitely false). Strong negation is used to
give an explicit proof of a predicate’s falsehood.
These features are integrated into s(CASP) and have been leveraged for various applications dis-
cussed earlier.

Discussion: Prior research has found that these deductive (along with inductive and abductive)
reasoning skills are somewhat lacking in LLMs (Cheng et al., 2024; Abe et al., 2025). This is likely
due in part to the fact that LLMs do not reason, but rather match patterns, and so are prone to
confabulations. Cyc, on the other hand, provides mixed results. Cyc has over 1,000 reasoners for
deductions that are each optimized for different kinds of knowledge, contexts, and solution finding.
This provides a wide breadth of deduction ability, however there are disadvantages associated with
having such a large number of reasoning engines. Namely, processing power required for running
multiple reasoners, and overhead from meta-reasoners deciding which reasoners are needed. There
is a trade-off between accuracy and speed associated with symbolic or neural methods.

#03 Induction: Effective inductive reasoning is essential for navigating complex, uncertain en-
vironments. It involves generalizing from specific observations, such as inferring species traits, and
making temporal projections where the probability of a fact holding over time often follows pre-
dictable decay curves (e.g., linear, Gaussian). Such reasoning supports adaptive decision-making,
despite the inherent risk of error. This type of reasoning is the foundation for explanation-based
learning, which seeks to learn more with less data based on inducing general rules from specific
examples.

s(CASP): Inductive Logic Programming (ILP), see survey by Cropper & Dumancic (2022),
is a sub-field of machine learning that learns interpretable logic programs from labeled data and
background knowledge. Unlike statistical models, ILP uses symbolic representations and logical
inference to derive hypotheses that generalize observations in a human-understandable way. This
makes ILP valuable in domains requiring transparency, prior knowledge integration, and formal rea-
soning, such as bio-informatics, legal systems, and explainable AI. The FOLD family of algorithms
extends ILP by enabling the learning of default rules with exceptions, capturing common patterns
of non-monotonic reasoning (Gupta et al. (2023); Wang & Gupta (2024)). Given the following data,
the initially-learned rule is flies (X) :– bird(X) due to the data on “tweety”. Then from the example
“pengu” FOLD learns that penguins are an exception to the rule, so the rule flies (X) is refined by
adding not ab(X).

1 % Data
2 bird(tweety) . flies (tweety) . bird(pengu) . penguin(pengu) . –flies(pengu) .
3 % Learned Rules
4 flies(X) :– bird(X) , not ab(X) . ab(X) :– penguin(X) .

FOLD has been used to encode models learned from various real-world data into s(CASP) pro-
grams. All versions of the FOLD algorithm inductively learn rule-sets from datasets, provide a
comparable accuracy to deep learning systems (particularly, the FOLD-SE system), and are com-
pletely explainable, thanks to the s(CASP)’s justification framework. The example above is a simple
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one for illustration purposes only, for more complete examples and formal review of using FOLD
for ILP, please see Gupta et al. (2023) and Wang & Gupta (2024)

Discussion: Regarding induction, the paper by Lenat and Marcus state that “[. . . ] by perform-
ing one step of reasoning, Cyc could generate tens of billions of new conclusions that follow from
what it already knows”. This has the possibility to add many new, default-true statements to the
knowledge base. This creates inductive conclusions on a large scale, leading to increased general-
izability. However, learning based only on internal knowledge without bringing in new knowledge
could lead to increased bias in the conclusions drawn by some of Cyc’s many reasoners due to
normally imperceptible bias in the human-created axioms.

#04 Analogy: Analogy is the ability to map similarity between objects of often disparate meaning.
This is defined as a representational mapping from a known “source” domain to a novel “target”
domain (Hall, 1989). In natural language, this commonly comes in the form of analogical phrases
(“life is like a box of chocolates”). However, analogical reasoning is also used for various logic
problems (such as Raven’s Progressive Matrices). Analogical reasoning has been historically diffi-
cult for AI systems.

s(CASP): Symbolic systems have been used to solve the analogical reasoning problem with
various degrees of success (Mitchell, 2021). Because these other successful systems (Falkenhainer
et al., 1989; Hofstadter et al., 1995) are often predicated on turning analogical problems into pred-
icates that can then be reasoned over, s(CASP) could be used as a more modern reasoner with at
least as much success. In addition, analogies can be automatically generated by taking a partially
grounded s(CASP) rule, then “lifting” it by replacing constants with variables, then instantiating
these variables with different constants. Thus, a concrete procedure for boiling water can be used to
generate an identical procedure for boiling milk. Work is in progress to automate such analogical
reasoning using s(CASP).
In the social chatbot application by Zeng et al. (2024), analogical reasoning has been realized by
integrating s(CASP)’s reasoning with an LLM’s ability to convert text into knowledge represented
as logic predicates. If the LLM-based text-to-predicate translation module recognizes that the cur-
rent topic is about the movie Titanic, a s(CASP)-based analogical reasoner is triggered to find, for
example, Catch Me If You Can movie as a candidate for the next discussion topic, since Leonardo
DiCaprio leads in both.

1 relevant_topic(A, B, 'has_same_person' ) :– movie(A) , movie(B) , person(C) , act_in(C, A) , act_in(C, B) .

Additionally, LLMs can also help in generating analogical information, that is then used by the
s(CASP) engine to gather analogous pieces of information:

1 relevant_topic( 'Batman Dark Knight Rises' , 'Titanic ' , 'hero sacrifices himself for others ' ) .

Discussion: LLMs have been found to perform well at responding to natural language analog-
ical phrases (Musker et al., 2024). However, in analogical reasoning, LLMs often make mistakes
different than what humans would make due to a lack of deeper understanding. The ability to repli-
cate responses to analogical queries is valuable but insufficient for true trustworthy AI. Alternatively,
symbolic approaches can achieve good results on logical puzzles like RPMs, but lack the ability to
integrate with natural language or make logical leaps like analogical phrases require without careful
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data population. In that area, Cyc can do well only on analogical phrases contained in its knowledge
base.

#05 Abductive Reasoning: The term abduction refers to a form of reasoning that is concerned
with the generation and evaluation of explanatory hypotheses. We could also think of abduction as
assumptions-based reasoning. Abductive reasoning leads back from facts to a proposed explanation
of those facts or assumptions that will explain that fact.

s(CASP): More formally, abduction is a form of reasoning where, given the premise P ⇒ Q,
and the observation Q, one surmises (abduces) that P holds. More generally, given a theory T, an
observation O, and a set of abducibles A, then E is an explanation of O (where E ⊂ A) if:

T ∪ E |= O T ∪ E is consistent

We can think of abducibles A as a set of assumptions. Generally, A consists of a set of propositions
such that if p ∈ A, then there is no rule in theory T with p as its head (that is, there is no way to
argue for p). We assume the theory T to be an answer set program. Under a goal-directed execution
regime, an ASP system can be extended with abduction by simply adding the following rules for an
abducible p:

1 p :– not neg_p. neg_p :– not p.

This is automatically achieved for a predicate p that we want to declare as an abducible in the
s(CASP) system through the declaration: #abducible p.

Discussion: The size of Cyc’s knowledge base works in its favor for abductive learning. Since
Cyc does not necessarily need to build proofs at runtime, but relies on a huge created knowledge
base, it is simple to step “backwards” along a reasoning tree for a function to find a plausible
explanation for why something is true or not.

#06 Theory of Mind: Two of the desiderata deal purely with the way an AI system commu-
nicates with a user (this and #15). Theory of Mind involves building and continually updating
nuanced models of conversation partners, including their knowledge, intentions, and communica-
tion styles, to interact appropriately. This helps the AI decide how terse or elaborate to be, when
to ask clarifying questions, and how to adapt to ambiguity while avoiding miscommunication. Ad-
ditionally, the AI must maintain a self-model to understand its capabilities, limitations, and role in
the interaction.

s(CASP): While Lenat and Marcus posed the combination of LLMs and Cyc as a potential
solution for the shortcomings of both, that was purely an idea for the future. However, the neuro-
symbolic approach of combining LLMs with s(CASP) has already been explored for a variety of
domains (Zeng et al., 2023; Basu et al., 2021a). In this use case, the LLM provides a natural
language semantic parser for a s(CASP) reasoner. This constrains the LLM to increase response
truthfulness and fluency, and allows for easy interfacing with a symbolic system. Unlike other
methods to improve LLM accuracy (such as chain-of-thought prompting or more intensive training),
using a s(CASP) reasoner provides actual logically-grounded constraints. The s(CASP) system also
determines the boundary of the “cognition” of AI with a dynamically maintained knowledge base,
which contributes as an essential part to a self-model, i.e., to avoid hallucination and be aware
that something beyond its capability exists. When the current dialogue is far beyond the task at
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hand it will be labeled as “irrelevant” by the LLM-based semantic parser, driving the conversation
back to the task. Additionally, attaching an LLM to s(CASP) allows s(CASP) to tailor its language
according to the theory of mind as well as an LLM can.

Discussion: LLMs are very adaptable to the user, having been trained on numerous styles of
text and speaking. Research finds that LLMs can automatically moderate their responses based on
the tone (both spoken and written) of the user’s input (Lin et al., 2024). However, unconstrained
LLMs by themselves can be easily “jailbroken” to speak in inappropriate ways (Chao et al., 2023).

#07 Quantifier-fluency: Quantifier fluency relates to being able to reason correctly with quanti-
fiers. Quantifiers play a crucial role in interpreting meaning of sentences. For example, as Lenat &
Marcus (2023) point out, the sentence “Every Swede has a king” versus the sentence “Every Swede
has a mother” have to be interpreted appropriately.

s(CASP): Since s(CASP) supports predicates, quantifiers can be easily modeled. In an answer
set program, all variable are universally quantified. However, negation as failure can introduce uni-
versally quantified variables in the body of the rules. Consider for example, the following definition
of a bachelor.

1 bachelor(X) :– man(X) , not married_status(X) .
2 married_status(X) :– married(X,Y,T) . %X married Y at time T

The variables Y and T are existentially quantified in the body of the second rule. The negation of
married_status in the first rule leads to these variables being universally quantified in the body. That
is, X is a bachelor if X is a man, and did not marry anyone at anytime. Thus, goals with universal
quantification can appear in the body of s(CASP) programs, allowing it to incorporate both types of
quantifiers.
With respect to the example where we have to distinguish between every Swede having a king vs
having a mother, such nuances can be modeled via ASP’s global constraints, as illustrated below.

1 false :– swede(X) , swede(Y) , X ̸= Y, king(K1, X) , king(K2, Y) , K1 ̸= K2. % All Swedes have same king
2 false :– king_of_sweden(K1) , king_of_sweden(K2) , K1 ̸= K2. % There is only one King of Sweden
3 king(K,X) :– king_of_sweden(K) , swede(X) .
4

5 false :– swede(X) , not hasmother(X) . % Every Swede has a mother
6 hasmother(X) :– mother(X,Y) .

Discussion: The way LLMs handle quantifier fluency is by leaning on prior knowledge to make
educated guesses. However, it can wrongly fill in unknown information with unrelated assumptions.
Cyc also relies on the completeness of its knowledge base for reasoning, and thus cannot reason
without information that is not in or deducible/inducible from its knowledge base.

#08 Modal-fluency: Modal-fluency is the ability to understand and use qualified statements.
This includes statements such as “He hopes that it was successful” or “I believe she’s afraid that it
may cost her the job”, which can be difficult for an AI system to reason over.

s(CASP): ASP is based on stable model semantics that allow for multiple possible worlds.
The semantics of modal logics that can be used to model modal-fluency is also given in terms
of possible worlds. Thus, modal logics can be elegantly modeled with ASP/s(CASP). The ¬K
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operator in epistemic modal logic, e.g., is nothing but default negation. Note that the concepts of
“p is definitely true”, “p may be true”, “p is unknown”, “p may be false”, “p may be unknown”, “p
is definitely false” are represented by ASP expressions“p”, “not −p”, “not −p ∧ not p”, “not p”, and
“−p”, respectively, where −p represents strong negation (Gelfond & Kahl, 2014). Deontic logic, or
the modal logic of obligations, can also be naturally represented in ASP/s(CASP). An obligation
(the OB modal operator) can be represented as ASP’s global constraint. In fact, since the odd loop
over negation represents a global constraint, it can be used to elegantly resolve the contrary-to-duty
paradox (as well as other paradoxes) of deontic logic. Consider the following statements for a
housing community:

1. It ought to be the case that there are no dogs.

2. It ought to be the case that if there are no dogs, then there are no warning signs.

3. If there are dogs, then it ought to be the case that there are warning signs.

4. There are dogs.

In our framework, this is simply modeled as:

s(CASP): dog

1 dog :– not –dog, not dog.
2 :– –dog, not –warning_sign.
3 :– dog, not warning_sign.
4 dog.

Given this program, no world will be permitted in which there is no warning sign. If we remove (4),
then no worlds will be possible in which a dog is present, as now constraint (1) will kick in. This
ASP encoding thus elegantly resolves the contrary-to-duty paradox (a.k.a. the Chisholm paradox).
For a more detailed discussion of the way s(CASP) allows for deontic logic representation, see
Gupta et al. (2025)

Discussion: Although LLMs do not possess or store any knowledge separately, the amount of
natural language they’ve internalized gives them some ability to “understand” complex sentences.
Larger LLMs perform moderately well with modal logic, though there is still much room for im-
provement (Holliday et al., 2024). While the LLMs can parse modal sentences, they lack a true
understanding of the logic behind modal statements. As with analogical reasoning (Desideratum
#04), replicating response patterns to modal logic does not equate to an understanding of it, which
makes them prone to strange mistakes and hallucinations.

#09 Defeasibility: Defeasibility represents the ability to acquire new information and change
previously held beliefs, many of which were likely only true by default in the first place. This
requires the ability to reconsider previous beliefs and evaluate them on their own merits against
new information before deciding whether the new or old information should be kept.

s(CASP): Defeasibility can be implemented using default rules. Default rules are directly sup-
ported in ASP and s(CASP) with the help of negation-as-failure. Also, as discussed earlier, the
FOLD algorithm primarily learns a model from data in the form of default rules with exceptions
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(as discussed in Desideratum #03). These learned rules not only include exception, they may also
include exception to an exception, exception an exception to an exception, and so on. This allows
for a high level of fidelity when learning or representing a nuanced concept.
Note that default rules also allow ASP and s(CASP) to model human judgment. Consider a doctor
prescribing a medicine M for disease D to patient P. Medicine M may have a side-effect for patient
P, and so the doctor has to make a judgment call before prescribing. The doctor could aggressively
jump to the default conclusion and may just ignore the possibility of a side-effect (contraindication).

1 prescribe(M, D, P) :– cures(M, D) , not contraindicated(M, P) .
2 contraindicated(M, P) :– has_side_effects(M, P) .

Or, the doctor could be conservative in jumping to the default:

1 prescribe(M, D, P) :– cures(M, D) , not contraindicated(M, P) .
2 contraindicated(M, P) :– not –has_side_effects(M, P) .

The rules above could be simplified and written, respectively, as:

1 prescribe(M, D, P) :– cures(M, D) , not has_side_effects(M, P) . %aggressive
2 prescribe(M, D, P) :– cures(M, D) , –has_side_effects(M, P) . %conservative

The first rule states that if there is no information about a possible side-effect, then proceed with
prescribing. The second rule states that the possibility of a side-effect must be ruled out before
prescribing. The ability to represent these nuanced judgment calls using default and strong negation
is a positive aspect of ASP and s(CASP).
In the reliable chatbot mentioned in Desideratum #06, s(CASP) maintains the state of the conver-
sation, tracking the progress of the task. Once new information comes, s(CASP) first checks if it is
consistent with the current state and knowledge base, and then uses it to update the state. Inconsis-
tent information will either be discarded or clarification will be sought from the human user.

Discussion: Both LLMs and Cyc have a similar approach to defeasibility, which is to yield to
human input whenever given. For Cyc, this is a part of the continual hand-grooming of its large
knowledge base. When information is added that conflicts with existing information, a human de-
conflicts the two either by removing one piece of information or adding additional context around
it. Cyc also supports default rules. LLMs have a less permanent approach, wherein rather than
removing data from its memory (a noted difficulty with LLMs (Blanco-Justicia et al., 2025)), the
LLMs generates new responses when challenged. While human input is almost always correct
relative to AI output, both systems do lack the ability to critically evaluate their answers themselves
(Antoniou & Batsakis, 2023).

#10 Pro and Con Arguments: Another facet of XAI represented in Lenat’s desiderata is the
“pro and con arguments” desideratum, which is a succinct description of the ability to explain why
a decision may or may not be true. This covers the ambiguity of life, where things may not be
objectively true but rather situationally true based on some confounding factors. Additionally, in
any given situation there may be multiple answers that are correct enough.

s(CASP): Answer set programs inherently generate pros and cons in the form of multiple
worlds. When looking at a solution in one possible world, s(CASP) outlines which factors must
be true or false to support that world. Additionally, if a proof of a goal g fails, one can immediately
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query not g (which must succeed in s(CASP)) to understand the cause of failure (Murugesan et al.,
2024). Similarly, counterfactuals can be computed in s(CASP) with ease (Dasgupta et al., 2025) to
examine various what-if scenarios.

Discussion: This functionality is built into Cyc which provides arguments for and against each
point it considers, along with heuristics for those arguments, at increasingly granular levels. LLMs,
however, do not provide balanced pro and con arguments because they fold too easily against user
disagreement (see Desideratum #09). Being unable to defend a premise when challenged makes it
impossible to trust a fair evaluation of its own answers (Wang et al., 2023).

#11 Contexts: Contextual understanding allows an AI to interpret and adapt knowledge, behav-
ior, and communication based on situational, cultural, and temporal factors, such as knowing when
cheering is appropriate or recognizing shifting truths over time. It must reason both within a con-
text (e.g., belief systems or cultural norms) and about contexts (e.g., deciding whether an inference
holds true in multiple settings).

s(CASP): The multiple worlds reasoning of all ASP programs allows for the exploration of
multiple contexts. Consider this example from Peter Norvig:

1. People can talk.

2. Non-human animals are not able to talk.

3. Human-like cartoon characters can talk.

4. Fish can swim.

5. A fish is a non-human animal.

6. Nemo is a human-like cartoon character.

7. Nemo is a fish.

The solution to the problem of whether Nemo can talk is difficult to represent in classical logic,
but simple in ASP. In ASP there would be two mutually exclusive worlds, a “cartoon” world where
Nemo can talk, and a “real” world where Nemo cannot. Of course, context can also be carried as an
argument of a predicate in s(CASP).

Discussion: Cyc contains over 10,000 contexts that are nested within other contexts to delineate
topics, time periods, real or not real, and more. This allows for a robust differentiation of contexts
for answers that fit the situation. However, it is still susceptible to encountering contexts not present
in its handmade knowledge base and slowdowns related to having to go down multiple different
context chains to provide answers. Still, this is better than LLMs which have difficulty keeping
context even from a single conversation if the conversation grows too large (Hatalis et al., 2024).

#12 Meta-Knowledge and Meta-Reasoning: Meta-knowledge and meta-reasoning enable
an AI to reflect on its own knowledge, assess the reliability and source of its beliefs, and understand
its strengths and limitations in performing tasks. This includes the ability to introspect, to adapt
strategies mid-process, to account for changes in reasoning over time, and to critically evaluate the
reliability of its sources.

s(CASP): Negation-as-failure gives us a form of meta reasoning because it allows us to rea-
son about a failed proof, enabling correction. The co-inductive hypothesis set (CHS) maintained
in s(CASP) (Arias et al., 2018) keeps track of everything that has been found to be true, further
allowing it to solve queries about the proof process itself. Did we solve this through assumption (co-
inductive) or was the reasoning well-founded (inductive)? Meta-programming and meta-reasoning
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can also be explicitly incorporated in s(CASP) by making the CHS accessible to the knowledge
engineer through appropriate built-ins.

Discussion: This function is available in a limited capacity in both LLMs and Cyc. LLMs can
be asked whether their answer is correct or not, but are prone to over-correcting if any user feedback
is given. Cyc has reasoners about its reasoning, and thus can perform meta-reasoning.

#13 Explicitly Ethical: Trustworthy AI must adhere to a transparent ethical framework, guided
by strong core principles. Crucially, the AI’s ethical commitments should be visible and understand-
able to those it affects, forming an unchanging part of its foundational contract with users.

s(CASP): It is possible for users to add constraints to a s(CASP) program, forcing it to be ex-
plicitly ethical. This is unlike deep learning systems which are difficult to correct or add constraints
that are not in the data they were trained on. Vašíček et al. (2024) have used s(CASP) constraints
to validate a patient controlled analgesia (PCA) pump modeled with event calculus, and Arias et al.
(2024b) used s(CASP) in the automation of administrative processes. These two applications il-
lustrate how ethical restrictions can be modeled as constraints. Additionally, recently Gupta et al.
(2025) demonstrated that there is 1-1 mapping between modal logics and ASP, and how norms of
obligation, impermissibility, and permission of deontic modal logic can be modeled elegantly in
s(CASP) through odd loop over negation. Conditional norms as well as conflicting norms can be
modeled. This expressiveness is crucial for representing ethical systems. Additionally, s(CASP) is
fully open source, allowing for complete review of its source code.

Discussion: As LLMs are still often “jailbroken” to provide data against the terms of their use,
it is clear that this principle is failed by LLMs. As for Cyc, without access to their systems it is hard
to verify if it is explicitly ethical or not.

#14 Sufficient Speed: An effective AI system must respond to a user query in a reasonable
length of time. While in rare cases a long processing time may be acceptable, in most use cases
users expect answers to their queries in a matter of seconds.

s(CASP): Rather than spending a large time training, as with deep learning approaches, logic
programming systems like s(CASP) perform their reasoning when the query is executed. Rea-
soning in real world environments with many objects, each having state and properties, becomes
overwhelming and can result in long execution time for queries. To avoid this problem, many logic
programs are kept small and domain specific. Thus these programs lack important context for rea-
soning.
The Virtually Embodied Common Sense Reasoning (VECSR) system is built on a foundation of
s(CASP) reasoning to solve problems in simulated embodied environments (Tudor et al., 2025).
The advantage of connecting a s(CASP)-based system to a virtual simulation (as with the other
connections to LLMs and data mentioned above) is that there is ultimate access to the context
required for decision making. However, this results in a large knowledge base and long durations
for query-execution. The VECSR system employs several compile-time static analysis techniques
that can bring the reasoning time in even large programs to under a second much of the time, faster
than even LLMs (proven in Tudor et al. (2025)). And unlike LLMs, logical constraints can be used
to guarantee correctness and executability. Using a unified and multi-domain reasoner like s(CASP)

13
59



A. R. TUDOR, Y. ZENG, H. WANG, J. ARIAS AND G. GUPTA

also eliminates the need for switching between multiple reasoners. Thus, s(CASP) can be used for
real-world, real-time reasoning with a high degree of accuracy.

Discussion: Processing speed has long been a downside of symbolic systems, like Cyc, as
they must have a large knowledge base. Cyc relies on a complex series of reasoners and caching
stratagems to manage speed of response. However, in this area LLMs enjoy the benefits of their
upfront training time. Modern LLMs, once trained, are able to produce responses faster than a
human would in most cases. However, the training of an LLM takes several months and large
quantities of computing power.

#15 Sufficiently Lingual and Embodied: Sufficiently Lingual and Embodied refers to the
ability of an AI system to communicate sufficiently for the task at hand. And while in some ap-
plications, the minimum necessary linguistics may not include natural language at all (such as in
systems designed to produce numerical answers for math problems), in most use-cases some natu-
ral language is optimal for human understanding. Even when answers can be provided with little
language support, it is important to be able to explain “why” an answer was given. In most cases,
knowledge and reasoning are language-independent, but a trustworthy AI will nonetheless be able
to communicate well.

s(CASP): Commonsense reasoning systems, including s(CASP), represent knowledge as pred-
icates. To communicate with humans, these predicates must be translated to and from natural lan-
guage. Machine translation of languages has been shown to be done well with pattern matching.
Thus, we employ LLMs to perform this task with high accuracy. The reliable chatbots referenced
in Desideratum #06 illustrate this very well. These reliable chatbot applications (Zeng et al., 2023)
usually target some specific tasks, and achieve the goal by collecting as much necessary information
as they can from the human users under the guidance of s(CASP)’s knowledge base. Take the restau-
rant recommendation chatbot (Zeng et al. (2023) as an example. A customer’s food preferences,
budget, family-friendliness requirements, etc., must be known before a restaurant recommendation
is given. This is encoded as part of s(CASP)’s knowledge. The chatbot uses an LLM to translate
user dialogs to gather these requirements represented as predicates, then makes a recommendation
using its encoded logic. It is also able to explain in natural language why it made a specific rec-
ommendation. By using an LLM as a semantic parser, the s(CASP)-based chatbot is able to have
linguistic proficiency similar to a human.
Additionally, s(CASP) has been used in a fully embodied way by the VECSR system described in
Desideratum #14. Using a s(CASP)-controlled agent in an simulation environment, s(CASP) can
be used to reason over a wide variety of external stimuli and perform tasks in an embodied way. For
complete details, see Tudor et al. (2025).

Discussion: As mentioned in Desideratum #06, while LLMs are very adaptable in their manner
of speech they are also prone to being jail-broken. Additionally, because of the quantity of data
LLMs have consumed, they often need to be fine-tuned to cover a specific domain. Cyc can cover a
variety of domains and does have some functionality for natural language, but it is noted to be rudi-
mentary. In our opinion, the best approach to making AI lingual is to leverage LLMs as translation
devices for converting text into a logic-based formalism and vice versa.
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#16 Broadly and Deeply Knowledgeable: An effective AI must possess or access a broad
and deep foundation of world knowledge, from commonsense to specialized domains, enabling it to
interact meaningfully and contextually with people. While memorizing facts is less critical in the
internet age, a trustworthy AI must skillfully retrieve, understand, and reason about information
in real time, drawing on structured sources and web services. Importantly, it should interpret the
meaning, trustworthiness, and implications of knowledge, using logical, analogical, and inferential
reasoning as humans do.

s(CASP): There are multiple ways to incorporate new information into a s(CASP) system. The
FOLD algorithms can induce from multiple forms of data, including traditional datasets and even
images (Padalkar et al., 2024). NeSyFOLD in particular demonstrates how the advantages of deep
learning (such as robust image analysis) can be leveraged with s(CASP) to add explainability and
transparent decision analysis to AI systems. The ability to learn from data is critical to build a
system that is broadly and deeply knowledgeable, as there is too much information available in the
connected modern age to ever encode by hand. Data can also be added from an LLM as in the
reliable chatbot research by Zeng et al. (2024) or from simulated environments as in VECSR and
reasoned over using the s(CASP) system.

Discussion: LLMs consume vast quantities of data, however there is a growing concern that
LLMs will run out of data before achieving true reasoning (Villalobos et al., 2022). Because of the
large quantity of data LLMs must be trained on, there can often be incorrect or low-quality data
included, which is then reflected in wrong answers provided by the LLM. Cyc’s solution to this
has historically been the creation of its bespoke, human-groomed knowledge base, which trades
man-hours for accuracy. However, it is not possible to encode the breadth of knowledge LLMs
gain through training by hand in an amount of time that allows for it to be kept up to date with the
changing world.

#17 Inconsistency Detection: An effective AI system must be able to detect inconsistencies and
enforce invariants, something that is easy for humans. The AI system, for example, should be able
to tell that a person cannot sit and stand at the same time (inconsistency) or that an alive human
must always breathe (invariant).

s(CASP): Inconsistencies and invariants can be modeled quite simply as global constraints in
ASP, and are supported in s(CASP). Examples above will be coded as:

1 false :– person(X) , sit (X) , stand(X) .

These constraints may be used in sophisticated reasoning tasks, such as if we ask a person sitting
on a chair to turn on a light switch at the other end of the room, then we know that the person must
stand up first.

Discussion: The ability to specify inconsistencies has not been presented as a desideratum by
Lenat & Marcus (2023). However, it is an extensively used feature in commonsense reasoning. Hu-
mans learn a vast number of such inconsistencies and invariants and use them in reasoning. LLMs
do not have an explicit representation of inconsistencies, and the lack of enforcing consistency is a
source of hallucinations. Cyc’s reasoners have to have inconsistency detection embedded, and it is
likely that the various reasoners incorporate it.
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#18 Multiple Possible Worlds: An effective AI system should reason about possible worlds
that can simultaneously exist. Humans have the ability to simultaneously represent multiple possible
worlds in their mind and reason over each separately. For example, the real world and the world
of cartoons are two different worlds with parts that are common (fish can swim in both worlds, for
example) and certain parts that are inconsistent (fish talk like humans in the cartoon world and not
in the real world).

s(CASP): In s(CASP), multiple possible worlds are easily represented through even loops over
negation as discussed in the Abduction and Context desiderata. s(CASP) explicitly supports co-
inductive reasoning (which relies on greatest fixpoint semantics), essential to representing multiple
possible worlds.

Discussion: LLMs do not have an explicit notion of multiple possible worlds, and this again can
be a source of hallucinations. In fact, machine learning systems are often not even aware of such
nuances, and conflating of multiple worlds can be a source of inaccuracy and hallucination. Cyc
supports contexts which can be thought of as different worlds, however, additional logic is needed
to distinguish between different contexts and to indicate whether one context is a sub-context of
another one. Lack of support for multiple possible worlds is a legacy of Russell’s insistence on only
relying on well-founded constructs (Gupta et al., 2022). ASP/s(CASP) break away from this dogma
and support non-well-founded semantics, crucial to supporting commonsense reasoning.

4. Conclusion

Table 1 shows that the 16 (+2) desiderata that trustworthy AI systems must support could be sup-
ported by s(CASP) either directly or through recent applications. As future work, we believe that in
order for s(CASP) to enable truly reliable AI it is necessary to improve its execution efficiency, ap-
plying techniques such as the dynamic consistency check by Arias et al. (2022b), and to build a large
foundation of commonsense knowledge like Cyc already possesses. Brittleness is another issue in
symbolic knowledge representation, i.e., KB construction is error prone, and a small change can
drastically change the meaning of a KB. This is somewhat alleviated by providing explanations and
program debugging/tracing tools created for s(CASP). However, what will further help are tools that
can statically analyze, for example, if adding a constraint will make a KB inconsistent. Neverthe-
less, s(CASP) has already proven its usefulness in specific applications, such as the IRMA system
by Forsante Corp of Finland for automating the Clozapine drug delivery guidelines. IRMA is the
first logic-based system certified under the EU Medical Device Regulation (class 2b) (Forsante Oy,
2025). Thus s(CASP) is used commercially while still being open source and freely available for
anyone looking to create trustworthy AI applications.
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