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Abstract 

Multiple theories have been proposed to explain mental rotation. The analog theory was inspired 

by the seminal experiment that introduced the Shepard–Metzler (SM) task, which found a linear 

trend between the angle between two objects and the time to judge them as the same or different 

(Shepard & Metzler, 1971). This finding was taken as evidence of objects being mentally 

represented and spatially transformed (e.g., rotated). Subsequent theories have questioned whether 

mental rotation is such a kinematic process. The viewpoint theory, in particular, explains how 

response time (RT) is linearly related to angular disparity in terms of the similarity between 

viewpoints. Here, we evaluated two models that instantiate this theory in an experiment on the SM 

task and a variant of it. One model is an algorithm from image processing and operates at the raw 

level of images, computing the normalized mean-shifted cross-correlation (NMSCC). The other 

model is based on a computational architecture adapted from computer vision and operates at the 

structured level of vector spaces: the cosine similarity of latent vectors in AlexNet, a convolutional 

neural network (CNN). Neither model demonstrated the expected performance profile consistent 

with the human data. In response, we introduced a process account as an alternative way to 

interpret the results of the experiments under the analog theory. 

1.  Introduction 

People can infer two objects are the same by the congruence of their shapes. While congruence 

can be determined by simply moving objects into alignment, it is unclear how people can do this 

with objects in images without physically interacting with them. In the 1970s, Shepard and his 

collaborators famously proposed that people do so by spatially transforming mental images of 

objects in their mind (Shepard & Cooper, 1982). They describe mental rotation as one such 

mental transformation in which mental images of objects are rotated in the mind. To evaluate this 

proposal, they designed what has come to be called the Shepard–Metzler (SM) task, which asks 

people to judge whether objects like those depicted in Figure 1 are the same or different without 

physical interaction. A striking finding was that response time (RT) increased linearly with the 

angular disparity between the orientations of compared objects (Shepard & Metzler, 1971). They 

interpreted this as evidence of mental rotation and mental imagery more generally. 

Given that cognitive processing in mental transformation seems to follow motor principles of 

motion, they proposed an analog theory of mental imagery (Shepard, 1978). This theory posits 
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kinematics of the mind as the mental counterpart to equivalent laws of physics (Shepard, 1994). 

Mental rotation, then, is a continuous process of rotating objects in the mind akin to manually 

reorienting physical objects (Shepard & Metzler, 1971). A logical next step is to instantiate this 

theory as a computational model to test whether the claims it makes about representation and 

process are sufficient for reproducing the human data. There have been many such models over 

the years (Funt, 1983; Hamrick & Griffiths, 2014). One goal of this study is to look towards 

existing computational methods from image processing and computer vision for new sources. 

The analog theory was almost immediately challenged in the context of mental imagery. 

Famously, Pylyshyn’s (1973) symbolic theory of mental imagery proposes mental images are but 

propositional representations capturing abstract associations between the constituent parts of 

objects. Mental rotation is, then, merely logical inference over such representations. In short, this 

theory proposes mental imagery is an epiphenomenon. This debate on the phenomenology of 

representation in the mind between proponents of imagistic cognition, often led by Kosslyn and 

his collaborators (Kosslyn & Pomerantz, 1977; Kosslyn et al., 2002), and proponents of symbolic 

cognition, often Pylyshyn standing alone (Pylyshyn, 1973; 2002), raged for decades. It was 

finally resolved with the maturation of functional neuroimaging, which brought the ability to 

directly observe which areas of the brain are active during mental imagery. Early studies showed 

that these were areas associated with vision and visuospatial reasoning, not those associated with 

language processing or logical reasoning (Kosslyn et al., 1995). Subsequent studies found 

evidence of a linear function: activation in the intraparietal sulcus (IPS), a part of the visual 

system associated with spatial transformations, increases with the angular disparity between 

orientations of compared objects (Just et al., 2001; Kosslyn et al., 2001). With these findings, 

cognitive scientists largely side with the analog theory. 

Still, subsequent theories have been proposed that also find support. Here, we consider the 

viewpoint theory, which shares with the analog theory the assumption that people can form 

mental images (Edelman, 1995). It differs from the analog theory in proposing that similarity, not 

rotation, is the mechanism for comparison. Specifically, it claims that for objects at different 

orientations, the greater the angular disparity between them, the less similar their viewpoints are, 

and thus the longer it takes to judge them as the same or different. Put succinctly, mental imagery 

is real, but mental rotation is an epiphenomenon according to this theory. We instantiated the 

theory in two ways by adapting a method of computation from image processing and another 

from computer vision: the normalized mean-shifted cross-correlation (NMSCC) (Bradski, 2000) 

and AlexNet (Krizhevsky et al., 2012), respectively. We then evaluated our two models as 

cognitive science theories in an experiment on the SM task and a variation of it focusing on 

Figure 1. Sample pair of congruent Shepard–Metzler (SM) figures used in the original SM task. 
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rotational symmetry. Finally, we framed the experimental results of our two models in the context 

of both the viewpoint and analog theories of mental rotation. 

2.  Literature Review 

2.1  The Shepard–Metzler Task 

It takes people time proportional to the angular disparity between the orientations of two objects, 

like those depicted in Figure 1, to determine whether they are the same or different (Shepard & 

Metzler, 1971). In the SM task, this angular disparity is the primary independent variable and the 

time taken to make this judgement (i.e., RT) is the primary dependent variable. Objects are either 

congruent or mirrored; this is the other independent variable. Accuracy of judgements is another 

dependent variable. Because people are typically highly accurate on this task, researchers 

generally focus on RT. 

The angular disparity between orientations of objects is defined as the shortest angle between 

them. This is important because people somehow know the optimal direction of rotation. For 

example, for a 2D shape in the picture plane, people have the choice of rotating it clockwise or 

counterclockwise, and they choose to take the shortest path. Additionally, knowing the shortest 

path of rotation beforehand only minimally affects people’s performance (Cooper & Shepard, 

1973; Shepard & Metzler, 1971). These are major points of curiosity that we return to in the 

General Discussion. 

There are also several other aspects of the SM task that are important to consider. One is that 

even when the objects are mirrored, RT is still a linear function of the angular disparity—albeit 

with slower RTs and at a slower rate of RT over angular disparity (Parsons, 1987). This is a 

puzzling finding because the angular disparity between orientations of mirrored objects is 

technically ill-defined (Shepard & Metzler, 1971). Different theories of mental rotation explain 

this finding in different ways.  

Another aspect to consider is that the objects need to be chiral (i.e., have “handedness”) so 

that a mirrored object can be distinguished from the object it mirrors. Chirality is necessary to 

ensure that geometric transformations that account for chirality like rotation are required to 

determine congruence. Otherwise, people can shortcut mental rotation and purely rely on 

discriminative features of objects to make their judgements. 

Lastly, the SM task originally involved showing two objects simultaneously so that they do 

not overlap. Subsequent studies explored sequential presentation of objects centered at the same 

point (Cooper & Shepard, 1973; Metzler & Shepard, 1974). The same linear trend between 

angular disparity and RT was found in this case. This detail is important because both viewpoint 

models can be understood to be performing this sequential version of the task, processing images 

of objects separately before comparing them. It is of no consequence for the purposes of 

replication that the experiments of the current investigation implement the sequential version. 

2.2  The Viewpoint Theory 

Like the analog theory, the viewpoint theory of mental rotation is an imagistic account of mental 

imagery that proposes people can form mental images of objects. It differs, however, in proposing 
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that mental rotation is not a spatial transformation but rather arises from the similarity between 

the viewpoints of objects from which they are viewed (Edelman, 1995). 

Supporting the viewpoint theory, Edelman and Bülthoff (1992) found that when participants 

are shown a limited set of viewpoints of unfamiliar 3D objects and then tested on novel 

viewpoints of those objects, both RTs and error rates increased with angular disparity from the 

orientations of known viewpoints. They speculated that the linear trend, originally taken as 

evidence for a spatial process, is mediated by similarity: as angular disparity increases, similarity 

decreases, requiring more processing time and increasing error rates. Their explanation of mental 

rotation is taken as the viewpoint theory. For this theory to be a viable account of mental rotation, 

there must be a similarity measure with scores that linearly decrease with increasing angular 

disparity. To fill this role, many similarity measures have been tested with varying degrees of 

success (Edelman & Weinshall, 1991; Niall, 2020; 2023; Stewart et al., 2022). We extend this 

prior work by testing both a simple algorithm from image processing, NMSCC (Bradski, 2000), 

and a computational architecture from computer vision, the convolutional neural network (CNN) 

AlexNet (Krizhevsky et al., 2012). 

3.  Research Questions 

We investigated four research questions concerning the viewpoint theory by forming hypotheses 

to test in two computational experiments. 

First is the question of whether the viewpoint theory can successfully account for the major 

finding in mental rotation: the linear trend between angular disparity and RT in both the 

congruent (Shepard & Metzler, 1971) and mirrored (Parsons, 1987) cases of the SM task. In both 

cases, we hypothesized the similarity between object viewpoints will decrease linearly with 

increasing angular disparity between the orientations of the depicted objects. 

Second is the question of whether mirrored objects can be differentiated from congruent ones 

via similarity alone. RT is found to be faster in the congruent than the mirrored cases (Parsons, 

1987). Thus, our second hypothesis was that similarity in the mirrored case will be lower than in 

the congruent case for the same angular disparity. 

The first two hypotheses can be summarized in the predicted results shown in Figure 2. In 

accordance with the first hypothesis, similarity score changes linearly with angular disparity in 

both the congruent case and the mirrored case. The two linear trends in the intervals 0–180° and 

180–360° reflect the surprisingly optimal choice of rotation direction by people during mental 

rotation because angular disparity is a maximum of 180°. Similarity scores of mirror-image 

comparisons are also always lower than those of congruent comparisons in accordance with the 

second hypothesis. 

Third is the question of whether the linear trend is sensitive to the rotational symmetry of the 

viewpoint. It is quantified as the number of orientations across 0–360° where the viewpoint is the 

same. For example, viewpoints with onefold rotational symmetry have a single orientation of self-

alignment at a rotation angle of 0°. This is the case for the SM figures shown in Figure 1. The 

plots of Figure 2 reflect our predictions for those SM figures in that there is one oscillation in 

similarity score (i.e., a change in slope at 180°). We hypothesized that there will be n number of 

these oscillations, corresponding to the n-fold rotational symmetry of the viewpoint. 
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The fourth is the question of whether simple image-based similarity measures from image 

processing sufficiently explain human performance, or whether the more complex computational 

architectures of computer vision models, which extract structured information (e.g., vector spaces 

of neural networks), are necessary. We hypothesized that the AlexNet model, drawing on more 

information, will perform better than the NMSCC model. 

4.  Models 

4.1  NMSCC 

The simple similarity measure we chose from image processing is NMSCC. Specifically, we used 

the implementation of the OpenCV library (Bradski, 2000). In this implementation, the similarity 

between two images of the same size is a scalar value in the interval [−1, 1], with 1 indicating 

maximal similarity. This is because the measure reduces to the Pearson correlation coefficient 

when comparing images of the same size. The statistical measure can be trivially reused as a 

similarity measure in the context of image processing because digital images can be represented 

as a collection of color channels (e.g., red, green, and blue). Pairings of color channels suitable 

for correlation analysis can be made as each position of a pixel in one image can correspond to 

the same position in another of the same size. In this context, the coefficient can be used to 

measure how color intensities of one image correspond to those at the same positions in another. 

In this way, a similarity score can be computed. We use this similarity measure directly as the 

NMSCC model. 

4.2  AlexNet 

The structured similarity measure we used was derived from the AlexNet computational 

architecture (Krizhevsky et al., 2012) from computer vision. As a CNN, it has multiple connected 

layers of units. The weights of these connections support the computation of informationally rich 
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Figure 2. Idealized replication of the original SM task supporting the first two hypotheses. 
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internal representations of input images. We used these representations in our model to compute a 

structured similarity measure. 

AlexNet was trained on images from the ImageNet dataset (Deng et al., 2009). This dataset 

consists of more than 14 million images, each associated with one of 1000 classification labels 

(e.g., “goldfish”). We use the pretrained version of AlexNet provided by the TorchVision library 

(Paszke et al., 2019). This version closely follows the original design outlined by Krizhevsky et al. 

(2012). 

The first layer of AlexNet is the input layer receiving the color intensities of every pixel in an 

image input. The last layer is the output layer that outputs the probability of membership in each 

of the 1000 categories of ImageNet. The layers in between are where internal representations of 

input images are computed. We chose the first of the final three “fully connected” layers of the 

CNN to extract internal representations of images. We made this choice because these layers 

compute a holistic representation of input images. 

The activations of the units in the first fully connected layer form a vector. We use the cosine 

similarity of two of these vectors, one for each compared image, as a similarity measure. This 

measure computes the cosine of the angle between two vectors, the result of which is in the same 

interval [−1, 1] as the NMSCC model with the same interpretation of 1 indicating maximal 

similarity. 

5.  Experiment 1 

In this experiment, we tested whether the viewpoint theory can account for the original finding of 

mental rotation by Shepard and Metzler (1971) in the congruent case and by Parsons (1987) in the 

mirrored case. Rather than measuring RT like these studies, we examined whether similarity 

score follows a linear trend with angular disparity. With respect to our first hypothesis, we 

expected the linear trend to occur in two intervals: 0–180° with a negative slope and 180–360° 

with a positive slope. Thus, we expected the overall function of a complete rotation to be bilinear 

in the interval 0–360°. With respect to our second hypothesis, we expected similarity to be lower 

for mirrored objects. Thus, we expected the model findings to approximate the idealized 

predictions of Figure 2. With respect to our fourth hypothesis, we expected the structured 

representations of AlexNet to perform better than the statistical measure of NMSCC. 

5.1  Method 

5.1.1  Stimuli 

We used viewpoints of the same object shown in the two SM figures of Figure 1. The object is 

drawn in perspective and oriented in the picture plane such that all 10 cubes are unambiguously 

visible. Instead of using the same line drawings as shown in Figure 1, however, we used shaded 

renderings of the object, as shown in Figure 3. They contain more visual cues of 3D structure 

with shading. This is especially relevant for AlexNet due to it being trained on images from 

ImageNet, which are primarily of the physical world with light and shadows. 

Notably, adjacent cubes are not flush with one another in the shaded rendering to maintain the 

quality of individual cubes being visible. This allows the shadows cast by each cube to outline its 
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own boundary. Additionally, to control the distribution of shading, the direction of lighting is not 

changed relative to the orientations of the object. 

5.1.2  Procedure 

To generate the stimuli for the congruent case, the left viewpoint in Figure 3 was taken as the 

base image of comparison. It was rotated clockwise in the picture plane by increments of 1° in the 

interval 0–360°. Images from each rotation were paired with the base image, which represented 

the 0° rotation, as stimuli for the congruent case. The same process was used to generate the 

mirrored stimuli, only with the rotated images being paired with the right viewpoint in Figure 3. 

Rotation in the picture plane was chosen because 2D shapes in viewpoints remain unchanged 

across rotations in this plane. When images are rotated in depth, parts of images transformed 

further away will be scaled down in resolution and be less visible. We controlled depth to rule out 

this confound. 

Under the viewpoint theory, we expected to replicate the results of the original experiment by 

Shepard and Metzler (1971) via a linear trend between similarity and angular disparity. As shown 

in Figure 2, this means the models should produce a bilinear function in the interval 0–360°. We 

therefore fit a bilinear function with the hinge point at 180° to both models. 

5.2  Results 

5.2.1  Accounting for Shepard and Metzler’s (1971) Results 

The first research question asks whether either viewpoint model demonstrates the linear trend 

between angular disparity and RT found by Shepard and Metzler (1971). We hypothesized that 

they do by demonstrating a linear trend with similarity. 

For congruent stimuli, the NMSCC model’s results showed a moderate linear trend between 

similarity and angular disparity. This is indicated by an 𝑅2 of .50 when fitting a bilinear function; 

see Table 1 for the relevant statistics and the left plot of Figure 4 for the similarity function itself. 

The sign of the estimated slope was negative in the interval 0–180°, −.47, and positive in the 

interval 180–360°, .47, matching the bilinear function observed in human data (Cooper & 

Shepard, 1973) under the assumption similarity is inversely related to RT. Thus, the NMSCC 

model’s replication of Shepard and Metzler’s (1971) results was partial. 

In contrast, the AlexNet model’s results in the congruent case show a weaker bilinear fit. The 

Figure 3. A shaded rendering of the same SM figure, used in the current study, and its mirror image 

reflected across the vertical axis. 
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𝑅2 is only .06; see Table 1. Still, the estimated slopes, −.13 in the interval 0–180° and .12 in the 

interval 180–360°, also match the empirical finding with humans. Statistics aside, it is rather 

difficult to see a bilinear function here; compare the AlexNet model’s similarity function in the 

left plot of Figure 5 with the idealized results in the left plot of Figure 2. 

With respect to the fourth hypothesis in the case of congruent stimuli, the NMSCC model 

better captured the bilinear function observed in human data (Cooper & Shepard, 1973) than the 

AlexNet model. 

5.2.2  Accounting for Parsons’ (1987) Results 

Our second hypothesis is that similarity scores for mirrored objects will always be lower than the 

similarity scores for congruent objects as this was observed by Parsons (1987) for human RT data; 

see Figure 2. Put simply, we predicted that the intervals of similarity scores will not overlap. 

For the NMSCC model, the range of similarity scores for the congruent stimuli and the 

mirrored stimuli overlapped significantly. Table 1 provides the relevant statistics: the interval is 

[.56, 1] in the congruent case and [.5, .77] in the mirrored case. This is also observable across the 

left and right plots of Figure 4. This is inconsistent with our second hypothesis, and it is 

problematic because people are slower in mirror-image comparisons than congruent comparisons 
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Figure 4. Similarity score as a function of rotation angle produced by the NMSCC model using congruent 

stimuli, on the left, and mirrored stimuli, on the right. 
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Table 1. Statistics of similarity score as a function of rotation angle for the two models and the two cases of 

stimuli in the SM task. 

 Stimuli Bilinear Fit (𝑅2) 
Estimated Slopes Similarity Scores 

0–180° 180–360° Low High 

NMSCC Congruent .50 −.47 .47 .56 1 

 Mirrored .44 −.12 .21 .50 .77 

AlexNet Congruent .06 −.13 .12 .66 1 

 Mirrored .03 −.1 .09 .67 1 
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(Parsons, 1987). The NMSCC model does not match this aspect of human performance. 

The AlexNet model produced the same pattern of results: the range of similarity scores for 

congruent stimuli and mirror-image stimuli overlapped significantly. It produced similarity scores 

in the interval [.66, 1] and [.67, 1] for congruent stimuli and mirrored stimuli, respectively; see 

Table 1 and Figure 5. 

With respect to the fourth hypothesis, neither model produced lower similarity scores for the 

mirrored stimuli. Consequently, there is no basis to choose between them as viewpoint models. 

5.3  Discussion 

The results of Experiment 1 showed that neither instantiation of the viewpoint theory is sufficient 

as a viewpoint model of mental rotation. 

The NMSCC model shows a moderate bilinear trend between similarity score and rotation 

angle, aligning with the Shepard and Metzler (1971) results. However, the intervals of similarity 

scores it produced overlapped significantly across congruent stimuli and mirrored stimuli, which 

is inconsistent with the finding that people are slower to compare congruent objects versus 

mirrored objects (Parsons, 1978). 

Surprisingly, the AlexNet model is even less aligned with the human data. There is no 

evidence of a bilinear trend between similarity score and rotation angle, while there is a 

significant overlap in the intervals of its produced similarity scores between congruent stimuli and 

mirrored stimuli. This latter finding may be explained by the training procedure of AlexNet. 

Recall it was a pretrained model from TorchVision, trained on ImageNet. To improve the 

performance of the model for object classification, the dataset was augmented by adding mirror 

images of existing images (Krizhevsky et al., 2012). This augmentation has the positive effect for 

image classification of improving model generalization across mirror images. A negative 

consequence may be its inability to discern mirrored stimuli from congruent stimuli. 

Although neither model fully aligned with human data, the NMSCC model’s results are more 
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Figure 5. Similarity score as a function of rotation angle produced by the AlexNet model using congruent 

stimuli, on the left, and mirrored stimuli, on the right. 
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consistent with the first and second hypotheses than AlexNet model’s results. Thus, the NMSCC 

model may be a more psychologically plausible implementation of the viewpoint theory than the 

AlexNet model. This is contrary to our fourth hypothesis. 

Interestingly, the AlexNet model produced similarity scores that largely oscillated in 4 cycles 

with rotation angle for both congruent and mirrored stimuli; see Figure 5. This could have been 

due to the model extracting a representative shape with fourfold rotational symmetry from the 

viewpoints of Figure 3 and their rotations. For example, the many quadrilaterals in SM figures are 

roughly such shapes. We followed up on this finding in Experiment 2. 

6.  Experiment 2 

In this experiment, we used simple 2D shapes with varying folds of rotational symmetry to test 

the sensitivity of the viewpoint models to rotational symmetry. This was motivated by the results 

of Experiment 1 and is relevant to the third research question that asks whether n-fold rotational 

symmetry of figures corresponds to the n cycles of similarity score oscillations. Given that SM 

figures are comprised of quadrilaterals, is the periodicity observed for the AlexNet model in 

Experiment 1 due to the roughly fourfold rotational symmetry of these shapes? If so, then this 

would indicate that AlexNet formed an internal representation of a shape with fourfold rotational 

symmetry for the SM figures in Experiment 1. 

6.1  Method 

6.1.1  Stimuli 

To test the third hypothesis, we used regular polygons; see Figure 6. It is notable that there is no 

regular polygon with twofold rotational symmetry. However, the vesica piscis shown in Figure 7 

is a comparable shape that fits the pattern. It can be seen as “regular” in the sense it has equal-

degree angles and equal-length sides. Furthermore, its two sides are mirrored curves, giving it 

bilateral symmetry. We therefore used it as our exemplar for twofold rotational symmetry. 

We evaluated folds of rotational symmetries 2–6 as there is evidence of human sensitivity to 

sixfold rotational symmetry from grid cell firing patterns of the brain (Doeller et al., 2010). The 

perceptual limits of symmetry detection remain unclear at present, however. Therefore, we 

 

    

Figure 6. Regular polygons with folds of rotational symmetry 3–6. 

 

Figure 7. The vesica piscis, a lens shape with twofold rotational symmetry. 
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additionally evaluated regular polygons with 7–12 folds of rotational symmetry. 

6.1.2  Procedure 

This experiment followed the same procedure as Experiment 1. For each of the 11 regular shapes, 

similarity scores were computed across rotation angles 0–360° for each of the two viewpoint 

models. We fit a sinusoidal function to these similarity scores using least squares to estimate the 

frequency parameter of the function, as well as its other 3 parameters. This is the critical 

parameter as it tells us the number of cycles of oscillations in similarity scores. Under our third 

hypothesis, we expected frequency to match the fold of rotational symmetry of each regular 

shape. 

6.2  Results 

Table 2 shows the fit of the sinusoidal function to the similarity scores over the interval of 

rotation angles for the two viewpoint models. The average 𝑅2 values are high across rotational 

symmetry of folds 2–12: .93 for the NMSCC model and .88 for the AlexNet model. These 

findings are consistent with our third hypothesis—that the models exhibit cycles in similarity 

scores with rotation angle. 

Table 2. Average sinusoidal fits of similarity score as a function of rotation angle across 2–12 folds of 

rotational symmetry per model. 

 Average Sinusoidal Fit (𝑅2) Standard Error 

NMSCC .93 < .01 

AlexNet .88 .02 

 

We further evaluated our hypothesis that the number of cycles of oscillations in similarity 
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AlexNet model, on the right, using regular shapes. 
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score will match the fold of rotational symmetry of compared shapes by examining the frequency 

parameter of the model fits. The results are shown in Figure 8. Both models demonstrate a one-to-

one correspondence between the frequency parameter and rotational symmetry fold of regular 

shapes, supporting our third hypothesis for simple shapes. 

6.3  Discussion 

The third research question asks whether the frequency of the models’ similarity scores observed 

in Experiment 1 was driven by the rotational symmetry of the stimuli. As SM figures are 2D 

projections (i.e., viewpoints) of cubes viewed as a collection of quadrilaterals, the rotational 

symmetry of those quadrilaterals may explain the periodicity observed for the AlexNet model in 

Experiment 1; see Figure 4. To evaluate this possibility, Experiment 2 used simple (i.e., regular) 

2D shapes of varying rotational symmetry. Both models demonstrated a strong correspondence 

between fold of rotational symmetry and frequency of oscillations in similarity score for these 

shapes. For the AlexNet model, this suggests AlexNet processed the SM figures in terms of their 

local fourfold rotational symmetry rather than their global onefold rotational symmetry. 

This finding makes sense given how computer vision models like AlexNet are trained to 

identify discriminative features relevant for image classification. It could be the case AlexNet 

preferentially detects local patterns (e.g., the local fourfold rotational symmetry of 2D shapes in 

SM figures) without consideration for global spatial arrangement. 

7.  General Discussion 

Imagistic theories of mental imagery can be distinguished into two classes. The classic analog 

theory proposes that people can spatially transform mental images; hence, the original term 

“mental rotation” (Shepard, 1978). The later viewpoint theory proposes that the similarity 

between images of objects at different viewpoints accounts for the linear trend between angular 

disparity and RT (Edelman, 1995; 1998; Morales & Firestone, 2022). We evaluated two 

computational models instantiating the viewpoint theory: the NMSCC model implements image-

based processing whereas the AlexNet model implements structured information processing. We 

tested four hypotheses addressing different aspects of this theory. 

The first research question asks whether the models can replicate the signature phenomenon 

of mental rotation: a linear trend between angular disparity and RT for both congruent and 

mirrored objects (Shepard & Metzler, 1971; Parsons, 1987). The central claim of the viewpoint 

theory is that longer RTs correspond to lower similarities between object viewpoints. The 

NMSCC model showed moderate support for this hypothesis, particularly for congruent stimuli. 

The bilinear similarity function exhibited by this model mirrors the pattern observed in human 

RTs during mental rotation; see Figure 4. By contrast, the AlexNet model showed a substantially 

weaker linear trend between angular disparity and similarity, contradicting our prediction that it 

would be the model that better captures the original results of Shepard and Metzler (1971); see 

Figure 5. 

The second research question asks whether the models can distinguish between congruent 

stimuli and mirrored ones through similarity. The viewpoint theory predicts similarity scores for 
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congruent objects will be consistently higher than those for mirrored objects. This prediction 

stems from similarity concerns alone, and if true, would match the human data showing RTs for 

mirrored objects are consistently slower than for congruent objects (Parsons, 1987). Neither 

model produced the expected pattern. Both the NMSCC model and the AlexNet model 

demonstrated substantial overlap between similarity scores for congruent stimuli and for mirrored 

stimuli; see Table 1. Thus, neither model adequately captures human performance. 

The third research question asks whether the linear trend between similarity and angular 

disparity is also sensitive to the rotational symmetry of 2D shapes. SM figures are composed of 

cubes, where each face is a quadrilateral when projected onto the viewing plane. Although 

distorted by orientation and perspective, these quadrilaterals have roughly fourfold rotational 

symmetry (i.e., they are approximately congruent for every rotation of 90°). The similarity 

function for AlexNet contained four peaks and valleys, suggesting that it was attending to the 

component square faces of cubes rather than the overall shape. This possibility found support in 

Experiment 2, which used simple 2D shapes (e.g., regular polygons). 

The fourth research question asks whether simple image-based similarity measures suffice for 

implementing the viewpoint theory, or whether the more structured forms of processing in the 

AlexNet computer vision model are necessary. Counter to our expectations, the simpler NMSCC 

model captured the bilinear pattern seen in human data better than the more complex AlexNet 

model. This suggests that low-level image-based processing may be a more psychologically 

plausible model of mental rotation. Still, neither instantiation of the viewpoint theory offers a 

satisfying account for the human data. Both computational models must be further developed if 

they are to serve as viable cognitive models. 

7.1  Inferring the Optimal Direction of Rotation: Towards a Process Account 

An enduring puzzle of mental rotation is how people consistently follow the optimal path of 

rotation when comparing objects even without advance knowledge of what it is (Cooper & 

Shepard, 1973; Shepard & Metzler, 1971). This is particularly interesting for mirrored objects, 

where the concept of a “shortest path” is technically ill-defined because no rotation can bring 

mirror images into alignment (Shepard & Metzler, 1971). Yet, people still respond in the SM task 

as a linear function of angular disparity for mirrored objects (Parsons, 1987). 

The discrepancy between our models’ performance and human behavior can be organized in 

terms of Marr’s (1982) tri-level analysis of computational models in cognitive science. The 

NMSCC model operates at the lowest level of implementation, directly processing raw visual 

data. The AlexNet model operates at a higher level of algorithms and representations, extracting 

and transforming visual data into latent vector spaces of visual information instead. 

We can restate the puzzle of optimality as a claim at the highest, computational level of 

Marr's (1982) analysis: mental rotation is optimal in always following the minimal (i.e., the 

shortest) path. This raises the question of whether either model considered here behaves 

consistently with this proposed optimality at the highest level. This is actually a difficult question 

to answer because neither model is a process account—neither specifies what is happening 

moment-by-moment during mental rotation. This is the reason we adopted the linking hypothesis 

that model similarity scores map to human RTs in our previous analyses. 
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That said, a viewpoint model can be straightforwardly adapted into a process model for 

mental rotation in the picture plane: 

(1) Form the current image (i.e., the mental image to be rotated) and the target image (i.e., the 

mental image to be matched). 

(2) Rotate the current image by a small increment in each of the two directions in the picture 

plane, clockwise or counterclockwise. 

(3) Compute the similarity between each rotated image and the target image.  

(4) Choose the rotated image with the greater similarity score to the target image as the new 

current image; doing so implicitly determines the path of rotation. 

(5) Repeat steps 2–4 until the similarity score of the current and target images peaks. If the peak 

value is close to 1, conclude the two objects are congruent. Otherwise, conclude that they are 

mirrored. 

In this process model, similarity serves both as the means for comparing objects and as the 

heuristic guiding the rotation process. Whereas the two models instantiating the viewpoint theory 

explain the linear trend between RT and angular disparity via the linking hypothesis that 

similarity shares this trend with them, the process model explains the trend as a product of an 

iterative process involving similarity. The process model follows the shortest path of rotation 

without advance knowledge of what this might be for both congruent stimuli and mirror-image 

stimuli, addressing the two puzzles of mental rotation (Cooper & Shepard, 1973; Shepard & 

Metzler, 1971). 

There are two notable precedents for such a process model in the literature. The earliest is 

Funt’s (1983) parallel-process model, which computes rotations in small increments. More 

similar to the present proposal is Hamrick and Griffiths’ (2014) threshold model, hill climbing 

model, and Bayesian quadrature model, which all iteratively sample similarity to small 

increments of clockwise and counterclockwise rotations in the picture plane before committing to 

one in successive iterations. These models were originally designed with the analog theory in 

mind, and, indeed, the process model is an instantiation of the analog theory. 

The process model’s explanatory power critically depends on the goodness of the similarity 

measure because the shortest path of rotation must fall out of differences in similarity alone at any 

orientation. Still, it need not be “perfect.” For the process model to align with the findings of 

Shepard and Metzler (1971), only a strictly monotonic trend between angular disparity and 

similarity is necessary. Put differently, the trend need not be perfectly linear; what matters is that 

optimality is incrementally approached. 

With this sketch of a process model in hand, we can revisit the results of Experiment 1 and 

reassess the adequacy of the NMSCC model and the AlexNet model. Figure 4 shows that the 

NMSCC model does not implement a similarity function suitable for determining the optimal 

path of rotation. There is a large interval spanning approximately 90–270° where similarity scores 

plateau in the congruent case. In this region of relatively constant similarity scores, steps 3 and 4 

of the process model would be unable to determine the optimal direction for the next rotation. 

Moreover, for mirrored stimuli, there are multiple local maxima that could trap the process model 

in a suboptimal path of rotation. Figure 5 shows that the similarity function of the AlexNet model 

also lacks the desired performance profile. The four cycles of oscillating similarity scores would 
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make it an unreliable guide for incremental rotation towards alignment. 

7.2  Limitations 

One limitation of our study is that we only evaluated two computational models as instantiations 

of the viewpoint theory. Future work should evaluate other algorithms from image processing and 

other computational architectures from computer vision. These may include newer CNNs than 

AlexNet and also models that take the form of vision transformer (ViT) architectures, which are 

newer still. 

Another limitation is that our experiments focused exclusively on rotation in the picture plane 

to control potential confounds from depth-related scaling effects. However, people can perform 

mental rotation in depth planes too (Shepard & Metzler, 1971). Future research should extend our 

investigations to rotations in depth planes to provide a more complete coverage. 
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