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Abstract
Autonomous driving systems excel at low-level perception but often lack structured, human-interpretable
understanding of dynamic scenes, limiting transparency, robustness, and introspection. We present
a cognitive framework for frame-based scene understanding, that transforms sensor-aligned ob-
servations into a hierarchical set of symbolic frames at the sample, object, and scene levels. Our
pipeline constructs ego-referenced trajectories, applies rule-based behavior parsing, and produces
natural language descriptors aligned with symbolic slot-filler structures. These representations
support introspective capabilities such as expectation-driven anomaly detection, reasoning over un-
certainty, and queryable explanations. We further integrate frames with large language models to
probe symbolic-to-language reasoning tasks (summarization, intent inference, and counterfactuals)
without raw sensor input. We describe implementation details, visualization tools, and application
use cases, and outline an evaluation protocol combining qualitative case studies and task-based as-
sessments. This work takes a step toward hybrid neuro-symbolic cognition for autonomy, enabling
interpretable, reflective scene-understanding and human-aligned communication.

1. Introduction

Understanding traffic environments is a complex and high-stakes challenge in the domain of au-
tonomous driving. It requires more than the detection of vehicles, pedestrians, and road infras-
tructure (Geiger et al., 2012; Cordts et al., 2016). Effective autonomy also requires the ability to
interpret interactions between agents (Shi et al., 2022; Zhou et al., 2022; Seff et al., 2023), to predict
their future behavior in dynamically evolving contexts (Chai et al., 2019; Salzmann et al., 2020),
and to explain actions in terms of goals, constraints, and safety implications. Although recent ad-
vances in deep learning have produced high-performing models for object detection (Liu et al.,
2023b; Li et al., 2024), multi-agent tracking (Zhang et al., 2022; Cao et al., 2023), and scene seg-
mentation (Cheng et al., 2022; Tian et al., 2023; Li et al., 2023), these systems frequently operate
as black boxes, and are not interpretable to humans (Lipton, 2018). They often lack semantic in-
terpretability, provide no mechanisms for introspection, and fail to communicate their reasoning in
human-understandable terms.

A key limitation of many current approaches for AVs are the reliance on end-to-end deep neural
networks trained with bottom-up statistical learning. These systems build internal representations
from raw sensor inputs such as RGB images and lidar point clouds (Du et al., 2023; Chen et al.,
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2024), constructing increasingly abstract features through stacked layers of nonlinear transforma-
tions. However, these learned features are sub-symbolic and distributed, making it difficult to in-
spect, generalize, or explain the model’s behavior in unseen or ambiguous scenarios (Samek et al.,
2017). In high-risk or safety-critical contexts, such opacity is a major liability (Amodei et al., 2016).

Because these models are optimized to exploit statistical correlations rather than structural or
causal knowledge, they often fail in rare, out-of-distribution cases. They may behave unpredictably
in edge situations, such as occluded intersections, erratic driver maneuvers, or abnormal pedestrian
motion. Although techniques such as saliency visualization and attention maps (Selvaraju et al.,
2017) have been proposed to make these systems more transparent, such tools only offer shallow
insights. They do not explain why a model reached a particular conclusion, nor do they support
counterfactual reasoning or structured queries.

As a result, there is growing recognition that perceptual competence alone is insufficient for
robust autonomy. What is needed is a middle layer of abstraction that bridges low-level sensor data
and high-level cognitive interpretation. This layer should represent context, causality, intent, and
uncertainty in a structured and human-interpretable form. In this paper, we propose such a frame-
work based on symbolic representations derived from Frame Theory (Minsky, 1974), a classic
model of structured knowledge in cognitive science.

Frame Theory, as originally proposed by Marvin Minsky, conceptualizes stereotyped situations
in terms of frames, which are structured collections of roles (or slots) and their expected values
(or fillers). A frame may represent a common scenario such as “approaching an intersection” or
“yielding to a pedestrian,” and it can be instantiated with specific objects, agents, and temporal rela-
tionships. This structure supports default reasoning, anomaly detection, and introspection. Frames
not only represent knowledge but also guide perception and action by activating expectations and
identifying gaps in understanding.

We introduce a novel application of Frame Theory to the autonomous driving domain. Specif-
ically, we present a pipeline that extracts symbolic, multi-level frame representations from the
NuScenes dataset (Caesar et al., 2020), a large-scale benchmark featuring sensor-rich urban driving
episodes. Our abstraction includes three levels of frames:

• Sample-level frames, which encode sensor-aligned, timestamped observations of objects and
motion.

• Object-level frames, which aggregate temporal trajectories, classify agent behaviors, and
track interactions with the ego vehicle.

• Scene-level frames, which summarize global context, traffic patterns, and scenario types
across entire episodes.

These frames are designed to reflect cognitively meaningful units of perception and behavior.
They organize raw sensor data into semantic representations that support introspective reasoning,
symbolic querying, and explanation. We refer to this transformation as a form of semantic com-
pression, where high-dimensional, noisy, and temporally distributed sensor signals are distilled into
structured, human-interpretable knowledge templates.
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Our central hypothesis is that such symbolic frame representations can serve as a “cognitive
layer” between perception and decision-making modules in autonomous systems. They provide a
substrate for symbolic reasoning, enable interpretability and debugging, and make it possible for
large language models (LLMs) to engage with perceptual context in meaningful ways. Rather than
conditioning LLMs on raw pixels or bounding boxes, we prompt them with symbolic descriptions of
what occurred in a driving scene and explore whether they can simulate intent, infer causal structure,
or generate counterfactual narratives.

This direction is inspired by recent findings that language models exhibit latent capabilities for
physical reasoning, narrative inference, and theory-of-mind tasks (Huang et al., 2022; Kosinski,
2023; Bubeck et al., 2023). Our approach leverages this capacity by grounding symbolic inputs
in a cognitively plausible representation, enabling reflective language-based reasoning over real-
world driving events. In doing so, we seek to build AI agents that not only act on sensory data but
also reason about their knowledge, limitations, and options, which is a hallmark of metacognition
(Flavell, 1979; Schraw & Moshman, 1995).

From a broader cognitive systems perspective, our work connects with efforts to develop sys-
tems that can explain, imagine, and plan (Liang et al., 2016; Lake et al., 2017). In driving, hier-
archical scene modeling and map-grounded forecasting further motivate structured representations
(Wilson et al., 2023; Karnchanachari et al., 2024; Shi et al., 2025). We ask whether machines
can imagine what happened in a traffic scenario given only a symbolic summary, and whether this
imagination can inform safer behavior.

Contributions

To summarize, the key contributions of this work are as follows:

1. We formalize a hierarchical symbolic frame abstraction for modeling driving scenes, which
encodes spatiotemporal semantics at multiple levels of granularity.

2. We develop a rule-based pipeline that extracts motion patterns and interaction descriptors
from real-world lidar data, instantiating frames with natural language summaries.

3. We provide a protocol to evaluate whether large language models can reason over these sym-
bolic frames, enabling scene interpretation, behavior prediction, and uncertainty reflection
without raw visual input.

This work presents a preliminary yet functional implementation of a frame-based cognitive
framework for autonomous scene understanding. The implemented components include: (i) a
complete data-processing pipeline for frame construction at the sample, object, and scene levels;
(ii) rule-based motion and interaction parsing from ego-aligned trajectories; and (iii) visualization
modules for instance-level, map-based, and temporal analysis. The language-based reasoning and
evaluation protocol using large language models are proposed as a next stage of investigation, to be
developed and quantitatively validated in future work.
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2. Related Work

2.1 Frame Theory and Semantic Representation

Frame Theory conceptualizes a stereotyped situation as a structured slot–filler scheme with default
values that capture typical features and contextual expectations (Minsky, 1974). These structures
allow an agent to map partial observations onto familiar contexts and then revise defaults when real-
ity conflicts with expectations. Empirical research on perception and cognition shows that low-level
sensory features are integrated into coherent object representations through attention (Treisman &
Gelade, 1980), and that schematic frames support reasoning and transfer across different situations
(Barsalou, 2012). In a driving scenario, a frame can encode roles such as the relative positions of
vehicles, the intended behaviour of agents and environmental cues to represent situations like ap-
proaching an intersection or yielding to a pedestrian. By formalising such relations, frame-based
representations provide a bridge between perception and higher-level reasoning that remains com-
prehensible to humans.

From a knowledge-representation perspective, it is not enough to record sensory data; a rep-
resentation should support inference and problem solving. McCarthy and Hayes argued that AI
systems need a general representation of the world that can be used to draw conclusions and plan
actions (McCarthy & Hayes, 1981). Wilensky later emphasised that effective representations must
expose the structural relations over which reasoning operates, rather than simply encoding raw data
(Wilensky, 1987). Our hierarchical frame formulation reflects these principles: it explicitly encodes
spatial and temporal relations among entities together with the goals or intentions of agents. This
dual encoding echoes the multimodel approach of Chittaro and colleagues, who combine structural
descriptions of a physical system with teleological information about its intended function to support
reasoning and diagnosis (Chittaro et al., 1993). Recent work on abstraction schemes in computa-
tional game design formalises abstraction properties (such as validity, distortion and adequacy) that
define tradeoffs designers must balance (Cardona-Rivera, 2020). Although those schemes are stud-
ied in a gaming context, the idea of balancing coverage against clarity is general: a coarse frame can
handle many scenarios but may lack precision, whereas a fine-grained frame is more interpretable
yet applies to fewer situations. Our design favours interpretability and human-aligned semantics
while recognising that greater detail must be incorporated carefully.

2.2 Neuro-Symbolic AI for Scene Understanding

Neuro-symbolic AI (NSAI) seeks to integrate the learning capabilities of deep neural networks with
the explicit reasoning of symbolic systems (Besold et al., 2017; d’Avila Garcez & Lamb, 2020).
Neural models excel at perception and pattern recognition, whereas symbolic reasoning contributes
transparency, compositional structure, and the ability to generalize across novel contexts. This
integration has proved effective in diverse tasks including program synthesis (Chaudhuri, 2025)
and visual question answering (Yi et al., 2018). In the context of autonomous driving, structured
representations such as lane-topology graphs and scene graphs demonstrate how explicit structure
improves interpretability and retrieval (Xu et al., 2017; Tang et al., 2020; Fu et al., 2024).

Within autonomous-driving research, NSAI approaches have been applied to enhance safety,
policy interpretability, and explanatory reasoning. (Qi et al., 2024) integrate logic-based temporal
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constraints into neural controllers to ensure risk-aware decision making. (Sharifi et al., 2023) em-
bed symbolic reinforcement-learning rules into deep networks to obtain verifiable driving policies.
(Yuan et al., 2024) employ retrieval-augmented reasoning with large language models to produce
structured, case-based explanations of driving behavior. Collectively, these studies exemplify com-
plementary neuro-symbolic strategies that bridge perception and reasoning through formal logic,
hybrid planning, and structured retrieval. Our work extends this line of research by deriving sym-
bolic scene representations directly from sensory data and aligning them with cognitively motivated
frame templates, thereby enabling interpretable and introspective scene understanding.

We process NuScenes (Caesar et al., 2020) logs into symbolic frame hierarchies, enriched with
natural language descriptors and semantic roles. These representations enable context-aware behav-
ior modeling, anomaly detection, and uncertainty reflection. Compared to prior works, our frames
are dynamic, interpretable, and grounded in real-world motion data.

2.3 Language-Based Reasoning with Symbolic Abstractions

LLMs have recently demonstrated emergent capabilities in causal reasoning, narrative simulation,
and physical commonsense inference (Huang et al., 2022; Kosinski, 2023; Bubeck et al., 2023).
Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) enhances these models by injecting
structured context during inference. RAG methods have been adapted for driving policy explanation
and decision support in autonomous driving(Yuan et al., 2024; Hussien et al., 2025).

We build on this paradigm by conditioning LLMs on our structured traffic frames. These inputs
summarize motion, spatial intent, and agent interactions using symbolic slot-filler representations.
Rather than responding to raw visual inputs, the language model reasons over abstracted cognitive
representations, simulating mental models and producing reflective outputs.

This integration of symbolic abstraction with generative reasoning supports a research path
toward self-aware and communicative AI agents in autonomous systems. In this work, we present
a preliminary framework focused on the methodological design and theoretical grounding, with
comprehensive empirical evaluation planned for future work.

3. Cognitive Perspective

Human scene understanding operates through multiple interconnected cognitive processes that trans-
form sensory input into structured, actionable knowledge. Cognitive psychology has extensively
documented these processes, from attention and pattern recognition to working memory integration
and episodic storage (Barsalou, 2012). Frame Theory (Minsky, 1974) offers a computational frame-
work that captures many of these mechanisms: stereotyped situations with slots (roles/attributes)
and fillers (instantiations) that activate expectations, guide attention, and highlight anomalies when
observations deviate from prior experience.

Our hierarchical frame design is explicitly aligned with established models of human cognition.
Research in cognitive development shows that humans construct layered mental representations,
from perceptual features to object concepts to situation models, that support flexible reasoning and
transfer (Treisman & Gelade, 1980; Zwaan & Radvansky, 1998). Our frames are designed to mirror
these core cognitive processes:
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• Expectation and default reasoning: Human drivers rely heavily on schematic knowledge to
predict typical behaviors (e.g., vehicles stopping at red lights, pedestrians yielding at cross-
walks). Our slots encode these affordances and support completion of missing details when
observations are incomplete or occluded (Barsalou, 2012). This mirrors schema-based pro-
cessing in human memory, where prototypical knowledge fills gaps in perception.

• Attention and anomaly detection: Cognitive research shows that humans automatically
detect violations of expected patterns, which trigger increased attention and processing re-
sources (Minsky, 1974). Unfilled or conflicting slots in our frames serve this function, ex-
posing knowledge gaps and behavioral violations that require deeper analysis or immediate
action.

• Episodic integration: The progression SampleFrame→ ObjectFrame→ SceneFrame
mirrors human temporal processing from momentary perceptual snapshots to object-centric
situation models to episodic scene summaries. This hierarchical integration is fundamental to
human event comprehension (Zwaan & Radvansky, 1998; Lake et al., 2017).

• Metacognition and self-awareness: Human cognition is distinguished by explicit awareness
of knowledge states, including what we know, what we do not know, and what information
is needed for confident action (Flavell, 1979; Schraw & Moshman, 1995). Our frames make
epistemic states explicit through unfilled slots and confidence markers, enabling computa-
tional systems to reflect on perceptual sufficiency.

• Mental simulation and counterfactual reasoning: Research on human imagination shows
that people construct internal models to simulate unseen events and explore alternative scenar-
ios (Lake et al., 2017). By conditioning LLMs on symbolic frames rather than raw pixels, we
enable similar narrative inference and counterfactual exploration based on structured situation
models.

This cognitive alignment is intended to move autonomous systems beyond correlational pattern
recognition toward more structured forms of understanding, explanation, and adaptive reasoning.
The architecture embodies a principled division of cognitive labor reminiscent of dual-process the-
ories in psychology: fast, automatic sub-symbolic modules perform efficient feature extraction and
object recognition; structured frames organize these features into interpretable, queryable situation
models; and higher-level language models operate on these symbolic representations to communi-
cate, hypothesize, and reflect. This three-tier organization is consistent with theoretical accounts of
hierarchical cognition and with broader calls for robust, interpretable AI architectures that integrate
symbolic and sub-symbolic reasoning (Marcus, 2020; Eckstein & Collins, 2021).

4. Method

4.0.1 Dataset Schema and Terminology

Our system implements a frame-based abstraction pipeline for autonomous driving scenes using the
NuScenes dataset (Caesar et al., 2020), one of the most comprehensive public benchmarks for au-
tonomous vehicle perception and prediction. NuScenes consists of 1000 driving episodes collected
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in complex urban environments across Boston and Singapore, capturing diverse weather conditions,
traffic densities, and road configurations. The dataset provides 3D bounding box annotations for 23
object categories, instance tracking across time, and high-definition semantic maps, making it ideal
for studying multi-agent interactions and long-term behavior patterns in real-world traffic scenarios.

The NuScenes schema is composed of several key entities (Table 1):

Term Definition

Scene A scene is a continuous 20-second driving interval and the top-level
container in the NuScenes dataset. It consists of a chronologically
ordered sequence of Samples.

Sample A sample represents a timestamped snapshot of the scene. It is
recorded at 2 Hz and links to all associated sensor readings and an-
notations at that time.

SampleData Each sample is composed of multiple sensor streams, including top-
mounted lidar, cameras, and radar. These are stored as distinct
SampleData entries.

Instance An instance is a unique object (e.g., car, pedestrian, bicycle) tracked
throughout one or more samples. Each instance has a persistent ID.

Annotation An annotation describes the state of an instance at a particular sam-
ple, including its 3D bounding box, size, position, velocity, orienta-
tion, and category.

Ego Vehicle The ego vehicle refers to the data-collection platform that all sensors
are mounted on. All annotations are expressed in the ego-centric
coordinate frame.

Location A location refers to a high-definition map region (e.g., Boston Sea-
port or Singapore Onenorth). Map priors include road lanes, traffic
rules, and spatial context.

Ego View (EV) A dynamic coordinate system centered on the ego vehicle. All
nearby object trajectories are computed relative to the ego’s position
and heading. Useful for reasoning about first-person interactions.

Bird’s Eye View (BEV) A ground-plane projection of the scene from above. Commonly used
for interpreting spatial relationships between agents. Derived from
the top-mounted lidar sensor.

Table 1. Core schema components and concepts from the NuScenes dataset used in our frame-based interpre-
tation pipeline.

The top-mounted lidar (referred to as LIDAR_TOP) is the primary sensor used in our imple-
mentation for 3D localization and trajectory interpretation. Each lidar point cloud is transformed
into a bird’s-eye view (BEV) representation. The BEV is a projection of the environment onto the
ground plane, allowing us to compute relative distances and movement patterns for all annotated
agents.
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4.0.2 Frame Abstraction and Design

To convert raw NuScenes data into structured semantic representations, we design a hierarchical
abstraction pipeline grounded in Frame Theory (Minsky, 1974). This approach decomposes the
continuous stream of sensor readings into cognitively meaningful units, organized across three con-
ceptual levels: sample_frame, object_frame, and scene_frame. This design reflects
how humans incrementally understand dynamic environments, from momentary observation to ob-
ject behavior to scene-level inference.

Semantic Hierarchy Overview Each level in our system captures a distinct scope of interpreta-
tion:

• SampleFrame: Encodes the scene at an individual timestamp. It contains the calibrated
ego pose, object annotations, and relative spatial relationships. This level mirrors the sensory
snapshot an autonomous vehicle processes every 0.5 seconds.

• ObjectFrame: Compiles temporally ordered sample frames for each tracked instance (us-
ing the instance_token). It computes motion statistics, interaction types (e.g., overtak-
ing, crossing), and symbolic behavior tags over time.

• SceneFrame: Summarizes all object frames within a driving episode (scene) and inte-
grates high-level context (e.g., location, route summary, traffic configuration). This level
supports holistic reasoning and scenario-based querying.

This hierarchy enables structured representations that are both temporally coherent and relation-
ally grounded. Crucially, each frame is ego-aligned, meaning object states are expressed relative
to the vehicle’s perspective, which facilitates interaction analysis and commonsense interpretation
across different driving contexts.

Motivation and Design Principles Our motivation stems from the need for interpretable, modu-
lar, and cognitively inspired representations in autonomous driving systems. Frame Theory offers
a natural template for such representations. Each frame defines expected roles (slots), which are
instantiated over time through sensor perception. When slots remain unfilled or deviate from ex-
pectations, they highlight uncertainty or anomalous behavior, which provides hooks for explanation
and policy refinement.

The separation between frame levels enables scalable processing: sample_frames support
low-latency updates, object_frames allow for mid-level summarization, and scene_frames
capture episodic context. Each frame class exposes methods for rule-based updating, symbolic
labeling, and natural language generation. This modularity is key for downstream integration with
reasoning engines and large language models.

Frame Implementation in Code Our implementation follows a class-based structure in Python.
Each frame is a class instance with typed slots, symbolic fields, and methods for assignment, update,
and export. For example, the ObjectFrame includes routines to segment motion into directional
primitives, detect behavior patterns (e.g., "crossed in front of ego"), and generate structured text
(e.g., "A cyclist overtook the ego vehicle from the left between 4.0s and 7.0s").
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Each frame instance is serialized into a nested dictionary and saved in JSON format for down-
stream use. This makes them accessible to both symbolic reasoning tools and neuro-symbolic mod-
els conditioned on language. Examples of frame instantiation are illustrated in Figure 1.

A C C CA A CB B B

Sample frame1

Sample 1

sample data ids
sample annotation ids

sample data ids
sample annotation ids

sample data ids
sample annotation ids

sample data ids
sample annotation ids

sample data ids
sample annotation ids

sample data ids
sample annotation ids

sample data ids
sample annotation ids

Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

Object_frame
for Object A

Object_frame
for Object B

Object_frame
for Object C

Sample Frame 

samples (raw data)

Object Frame

Scene Frame

Sample frame2 Sample frame3 Sample frame4 Sample frame5 Sample frame6 Sample frame7

· meta data · event analysis · description

A
B

C

Time Interval of a Scene

A scene

NuScene data tables

Parser NuScene api

· meta data
· condensed metrics
· trajectory analysis

· meta data
· condensed metrics
· trajectory analysis

· meta data
· condensed metrics
· trajectory analysis

Figure 1. Three-level frame abstraction hierarchy: SampleFrame (timestamped, ego-aligned observations),
ObjectFrame (temporal aggregation and behavior labels), and SceneFrame (episode-level composition
and context).

4.0.3 Annotation and Instance Tracking

Our annotation and tracking pipeline consists of three stages: (1) metadata extraction from raw
NuScenes tables, (2) ego-centric calibration and instance trajectory accumulation, and (3) rule-
based interpretation and symbolic population.

(1) Metadata Extraction from Raw Sensor Tables We traverse each scene, follow its linked
chain of sample tokens at 2 Hz, retrieve the associated sample_data entries, and record the
ego_pose per timestamp. For each sample, we pull all 3D bounding-box annotation entries,
including position, size, orientation, velocity (when available), and semantic category. This yields
synchronized time series for ego and surrounding instances.

(2) Ego-Centric Calibration and Instance Accumulation We transform all object coordinates
into the ego-centric frame using the inverse of the ego_pose homogeneous transform. This nor-
malization expresses trajectories relative to the ego vehicle’s position and yaw, which supports inter-
action analysis. We then group annotations by instance_token to build ordered trajectories of
time-stamped tuples (x, y, θ), forming the input to ObjectFrame construction. A synchronized
ego pose log is likewise maintained to derive relative dynamics such as overtaking, following, and
crossing.
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(3) Rule-Based Interpretation and Symbolic Population From calibrated trajectories, we com-
pute first- and second-order motion statistics (stepwise displacement, speed profile, lateral shifts,
heading changes), then apply a set of rules to detect behavioral primitives. For instance, a sign
change in lateral position near the ego origin indicates a potential "crossed in front" event, while
sustained parallel motion with decreasing lateral offset suggests an overtake.

4.0.4 Ego Motion Classification Rules

We segment the ego trajectory into symbolic motion primitives using change points in movement
and orientation. Two core rulesets handle forward/backward detection and lateral motion classifica-
tion.

When the angle between the ego orientation and movement vectors is less than π/2, motion
is labeled forward; otherwise, it is labeled as reversing. This classification disambiguates turn-
ing semantics in subsequent steps. Let ∆θ be the change in movement angle between successive
timesteps. We use thresholds of 2°, 5°, and 10° to label segments as straight, drifting, turning, or
sharp turning, with direction determined by the sign of ∆θ and adjusted for forward/back status.

4.0.5 Directional Segmentation for Instances

For each ObjectFrame, we segment movement by dominant direction using the ratio r = |∆x/∆y|
and a minimum step length to filter minor motion. We track side transitions (left/right, ahead/behind),
orientation classes, and group adjacent segments.

Algorithm 1: Instance Trajectory Interpretation via Directional Segmentation
Input: Ego-aligned object trajectory: (xi, yi) with timestamps
Output: Symbolic movement summary for the instance
Initialize empty segment list and relative position trackers;
foreach consecutive position pair (xi, yi), (xi+1, yi+1) do

Compute ∆x, ∆y, and distance;
if distance < 0.5 m then

label: minor movement
else

set r = |∆x/∆y| and label as dominantly left/right if r > 1.5, dominantly
forward/back if r < 0.66, otherwise diagonal

Update lateral side (left/right) and longitudinal side (ahead/behind);
Update orientation class from yaw; group segments and timestamps accordingly;

Summarize episodes, position changes, distances, and temporal span.

Robustness and Complexity Real-world trajectory data from lidar and tracking systems contains
noise, quantization artifacts, and occasional tracking failures that can lead to spurious motion labels.
To ensure robust segmentation, we implement several filtering strategies: (i) a 3-point temporal
median filter on (x, y) coordinates before computing differences, which eliminates single-frame
outliers while preserving genuine motion changes; (ii) hysteresis thresholds that require sustained
change before switching labels, preventing rapid oscillation between categories; and (iii) a post-
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Figure 2. Top: determining forward or backward motion by comparing the orientation vector (green) with
the movement vector (orange). Bottom: classifying lateral motion using change in movement angle ∆θ into
straight, drifting, turning, or sharp turning, with left/right decided by the sign.

processing step that merges adjacent segments with identical labels separated by gaps shorter than
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0.5 seconds, which accounts for brief tracking interruptions or minor motion below the detection
threshold.

The minimum segment duration is set to 0.5–1.0 seconds to focus on behaviorally meaningful
motion patterns rather than micro-adjustments.

Algorithm 2: Ego Vehicle Trajectory Interpretation
Input: Ego position and yaw sequences over time
Output: Symbolic motion segments and aggregated statistics
Sort by time; initialize totals and previous pose;
foreach consecutive pose pair do

Compute movement vector and distance; movement and yaw angle changes; normalize
to [−π, π];

Determine forward/back via angle between movement and orientation;
Label as straight/drift/turn/sharp turn with left/right;
Append to segment list and accumulate distance;

Group identical labels into contiguous segments with timestamps; compute duration,
average speed, and displacement.

For ego segmentation we additionally unroll yaw angles to avoid wrapping artifacts, and we
snap tiny |∆θ| to zero under a tolerance to improve stability. A post-pass merges micro-segments
under a duration threshold and re-computes summary statistics.

4.0.6 Scene-Level Composition and Language Summaries

We compose SceneFrame by aggregating all ObjectFrames, ego trajectory segments, and
global context (location, weather if available), producing: (i) episodic statistics (duration, object
counts, interaction counts), (ii) salient events (e.g., "pedestrian crossed ahead during ego right turn"),
and (iii) a natural language summary. Summaries are generated from templates populated by sym-
bolic slots and can be refined via LLM paraphrasing for fluency.

4.0.7 Hyperparameters and Implementation Details

By default, we use a sampling rate of 2 Hz, a minor movement threshold of 0.5 m, direction-
dominance ratio thresholds of 0.66 and 1.5, heading-change thresholds of 2◦, 5◦, and 10◦, and a
100–200 m BEV region of interest centered on the ego for visualization. All frames are serialized
as nested JSON files for downstream querying and retrieval. The current thresholds were chosen
empirically to balance sensor precision and interpretability. A 0.5 m cutoff filters typical lidar noise
(approximately 0.3 m) while retaining meaningful displacement, and angular limits of 2◦, 5◦, and
10◦ were found to reasonably separate noise, gentle drift, and deliberate turns. These settings pro-
duced stable segmentation across representative scenes, though they remain adjustable and may be
refined in future work.
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5. Visualization

Effective visualization is crucial for validating frame abstractions, debugging algorithmic decisions,
and communicating results to human annotators. We provide three complementary visualization
modes, each designed to highlight different aspects of the hierarchical frame structure and support
different analytical tasks.

• Instance-level trajectory analysis: This mode renders ego and selected object trajectories
with time-gradient coloring (early positions in light colors, recent positions in saturated hues),
directional heading ticks every 0.5 seconds, and class-specific geometric markers (rectangles
for vehicles, circles for pedestrians, diamonds for cyclists). Object saliency for display se-
lection is computed using a weighted combination of proximity to ego (inverse distance),
temporal duration (longer presence increases salience), and interaction significance (crossing,
overtaking, and yielding events receive higher weights). This view enables detailed analysis
of individual object behaviors and their relationships to ego motion.

• Scene map overlays with semantic context: This mode plots the top-k most salient trajecto-
ries over high-definition NuScenes semantic maps, providing crucial spatial context including
lane boundaries, intersection geometry, and traffic control devices. A red dashed region-of-
interest (ROI) box spanning 100–200 meters is centered on the ego vehicle to focus attention
on immediate interactions. Per-segment symbolic labels for ego motion primitives ("straight,"
"drifting left," "right turn") are placed at temporal anchors to show the correspondence be-
tween geometric motion and symbolic interpretation. This map facilitates the evaluation pro-
cess of the semantic features extracted with our framework.

• Temporal visualization and replay: Dynamic visualizations replay scenes at the original
2 Hz frequency with alpha-blended trails that fade older positions to convey motion history
and temporal flow. Symbolic behavior labels appear at appropriate anchor times with smooth
transitions and remain visible for sufficient duration to be readable. Key interaction events
(crossing initiation, overtaking completion) are highlighted with distinctive markers and brief
text annotations. Animations are exported as high-quality GIFs to support human evaluation.

We follow three visualization principles. First, we use high-contrast color schemes and a consis-
tent ego-centric coordinate system to improve readability and comparability across scenes. Second,
we place text with a non-maximum suppression strategy that reduces label overlap and preserves
local context. Third, we adapt rendering density by subsampling in long or cluttered episodes while
preserving anchor events and state transitions.

We will extend these visualizations to (i) support side-by-side comparison between rule-based
labels and LLM predictions for each ObjectFrame and SceneFrame, (ii) highlight disagree-
ments with color-coded overlays and timestamps to localize errors, and (iii) export per-scene sum-
mary sheets that align textual narratives with spatial plots. These tools will facilitate expert review of
the evaluation protocol and help diagnose failure modes such as missed interactions or inconsistent
temporal ordering.
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Figure 3. Instance-level visualization showing ego and bus trajectory interaction.

6. Language-Based Reasoning

A key hypothesis of our work is that large language models can perform structured reasoning over
symbolic scene representations without direct access to raw sensory data. This capability would
enable hybrid systems that combine high-performance perception with human-like semantic rea-
soning and communication. We test this hypothesis by interfacing frame-derived JSON summaries
with carefully designed LLM prompts.

Recent studies indicate that modern LLM/VLM systems can coordinate multi-step spatial rea-
soning and integrate symbolic context when properly conditioned (Wen et al., 2023; Chen et al.,
2023; Liu et al., 2023a; Sima et al., 2024). Our contribution is to ground these abilities in real driv-
ing scenarios through cognitively motivated frames. We hypothesize that conditioning on structured
frame representations, rather than pixels or free-form text, yields more accurate and introspectively
aware reasoning about traffic scenes.

Evaluation Protocol We use labels produced by our rule-based hierarchical frames as ground
truth to probe two capabilities of language models.

1. Label induction from low-level inputs. Given low-level spatial inputs (ego-relative coordi-
nates and pairwise relations), can the model infer the same frame-consistent labels as our rules
at the ObjectFrame and SceneFrame levels (e.g., motion segments, interaction labels).
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Figure 4. Map visualization of ego and salient object trajectories.

2. Scene summary from labels. Given only the symbolic labels, can the model generate a co-
herent scene summary that preserves spatial relations, temporal order, and salient interactions,
consistent with SceneFrame narratives.

We use a single, structured prompt aligned with the frame design to elicit zero-shot, single-turn
responses for both tasks. The prompt contains: (i) an ego-vehicle summary with temporal motion
segments and aggregate statistics; (ii) the top-k salient objects with their behavioral labels, prox-
imity measures, and interaction classifications; (iii) concise, timestamped interaction snippets for
key events (crossings, overtakes, yields); and (iv) a section listing unfilled or uncertain slots to make
epistemic limitations explicit. This design reflects our cognitive framing: perceptual samples are ab-
stracted into symbolic labels that support human-like understanding and are directly communicable
to language models.
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Figure 5. Ego vehicle movement segmentation for trajectory dynamics.

7. Limitations and Future Work

The current rule-based parsing operates in a simplified, abstract setting. It can over-segment curved
motion, lacks global turn awareness, and may miss corner cases that violate template assumptions.
Our narrative generation also relies on fixed templates, which limits verbal diversity and complicates
evaluation because both references and LLM outputs are textual. Next, we will learn turn-aware
primitives and induce rules from data, enrich frames with a prior-knowledge base (traffic norms,
map/topology constraints, commonsense relations), and integrate planning/safety feedback. We
also plan retrieval and case-based reasoning over stored SceneFrames, and human studies to
assess explanation quality and trust. Finally, we will test portability across datasets and domains and
explore automatic metrics that align summaries with symbolic constraints to enable fair comparison
between LLM outputs and reference narratives. We will release our rule-derived frame labels (with
JSON schemas and utilities) as a benchmark for reproducible LLM-based scene reasoning.
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