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Abstract
We introduce online Hierarchical Task Network (HTN) agents whose behaviors are governed by a
set of built-in directives D. Like other agents that are capable of rebellion (i.e., intelligent disobe-
dience), our agents will, under some conditions, not perform a user-assigned task and instead act
in ways that do not meet a user’s expectations. Our work combines three concepts: HTN planning,
online planning, and the directives D, which must be considered when performing user-assigned
tasks. We investigate two agent variants: (1) a Nonadaptive agent that stops execution if it finds
itself in violation of D and (2) an Adaptive agent that, in the same situation, instead modifies
its HTN plan to search for alternative ways to achieve its given task. We present R-HTN (for:
Rebellious-HTN), a general algorithm for online HTN planning under directives D. We evaluate
R-HTN in two task domains where the agent must not violate some directives for safety reasons or
as dictated by their personality traits. We found that R-HTN agents never violate directives, and
aim to achieve the user-given goals if feasible though not necessarily as the user expected.

1. Introduction

With the increasing availability of autonomous agents, there is also an increase in the frequency with
which users direct them to perform unsafe or even dangerous behaviors. This can be intentional. For
example, some recurring news items report on unmanned air vehicles (UAVs) that violate reserved
air spaces or "red zones" such as airports (Huang, 2025).

Sometimes, hostile actors may induce a user’s errors (e.g., of omission) in directing their agents’
monitoring. For instance, the actor may draw the user’s focus of attention towards an unrelated
event, thereby causing the user to reduce attention to their agents. More generally, unsafe use of
autonomous agents may be the result of factors such as cognitive overload. This can occur when the
user is performing multiple tasks, such as controlling multiple autonomous agents, and finds herself
unable to monitor some actions that the agents are performing. In fact, in experiments reported by
Gartenberg et al. (2014), users tasked with controlling multiple autonomous UAVs frequently failed
to reroute them when they flew over airspace that was unexpectedly restricted (e.g., where hostile
agents carrying anti-UAV weaponry were detected). In these experiments, the user needed to re-
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route the UAV to avoid the dangerous area. Part of the reason for the user’s omission of re-routing
the UAVs is that they needed to (1) focus on other tasks (e.g., positioning agents to take an aerial
photograph) and (2) control the navigation of multiple UAVs simultaneously.

Motivated by these factors, we investigate the utility of endowing online HTN planning agents
with the ability to rebel. We assume that an HTN planning domain, Σ, is accompanied by a set of
directives D (e.g., "avoid any red zone") and task correction procedures. If the agent finds itself in
a state s that has a discrepancy (i.e., δ(s) = True), then it may attempt to repair the tasks to be
executed based on its assigned task t, Σ and the task correction procedures. In this situation, we
distinguish between two types of rebellious HTN (R-HTN) agents:

• Nonadaptive agent: The agent stops executing task t whenever it finds itself in violation of
D and awaits a new command from the user.

• Adaptive agent: Whenever the agent finds itself in violation of D, it will attempt to perform
a corrective action (if feasible).1

R-HTN is motivated by the following agent design principles:

• HTN planning. A stratified planning paradigm where a task (e.g., achieve(g), to achieve
a user-given goal g), is recursively decomposed into simpler tasks, until so-called primitive
tasks, corresponding to actions, are generated such that when executed, these actions will
fulfill g.

• Directives. A directive is a function δ : S → {True, False} such that, given a state s ∈ S,
it returns True if s is an unexpected state, also called a D-discrepancy, requiring the agent’s
attention (e.g., the agent finds itself inside a hazardous ("red") zone, which it is prohibited to
visit).

• Online HTN planning. The agent interleaves HTN planning and execution; as new states are
visited, the agent detects if there is a discrepancy and may take action accordingly.

Our interest in rebellious agents based on HTNs is motivated by reports that HTNs are partic-
ularly suitable for many tasks, including military planning (Donaldson, 2014), strategic decision
making (e.g., in games (Smith et al., 1998; Verweij, 2007)), and controlling multiple agents (Car-
doso & Bordini, 2017), including teams of UAVs (Musliner & Goldman, 2010). R-HTN agents are
general and can be used for any task domain provided that Σ, D, and a task repair procedure are
given.

In Section 2 we describe an example scenario that illustrates the expected behavior of an R-HTN
agent. Next, we describe a taxonomy of D-discrepancies (Section 3). Following this, we discuss
online HTN planning (Section 4) and present our R-HTN agent algorithm (Section 5). Then we
describe an empirical study with two domains and discuss the results (Section 6). We finish by
discussing related work (Section 7) and providing final remarks (Section 8).

1. An example of a situation where this is infeasible is when the agent has already executed an allotted maximum
number of actions to achieve t.
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2. Example Scenario

Our first scenario is inspired by RESCHU’s task domain (Boussemart & Cummings, 2008). RESCHU
(Research Environment for Supervisory Control of Heterogeneous Unmanned Vehicles) was devel-
oped to study how cognitive overload impacts a user’s decision making. A RESCHU user directs
a set of UAVs to destination locations; they must also ensure that these UAVs avoid red (hazard)
zones. Over time, each red zone disappears and then reappears randomly in a different location (one
that does not include any agents). In our scenario, which we call O-RESCHU (for: own-RESCHU),
all agents begin at the same location and start with the same number of energy points. Agents con-
sume one energy point when moving to a contiguous cell. The user assigns a destination location
to each UAV, which should avoid all red zones (trespassing red zones, and movements within a red
zone, causes a UAV to lose even more energy points).

Figure 1: A randomly generated map where all five agents start from the location labeled "5s"

The user’s goal is for their agents to visit assigned destination locations while minimizing their
number of expended energy points. The user expects each agent to follow a shortest path from
its current location to the agent’s user-assigned destination location, but is not notified a priori
as to when and where red zones will disappear and reappear. Red zones can be thought of as
meteorological conditions that cause a UAV to consume more energy than usual, hence the user
should ensure that their UAVs avoid them.
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Figure 2: Location of the five agents after four time ticks.

Figure 1 displays a snapshot of a randomly generated configuration for O-RESCHU. The 10
(sets of) red squares are the red zones that agents should avoid (which we depict as a square of four
adjacent red cells). The colored single-cell location with the label "5s" is the starting location for
all five agents. The other seven colored cells are the destination locations.

Figure 2 displays a snapshot after four time ticks (at each tick, each agent moves at most to one
adjacent cell - above, below, left or right). Agent 4 reached its (dark blue) destination. Agents 3
and 1 will reach their respective (green) and (orange) destinations in the next time tick. Agent 0 is
navigating towards the brown location (upper left). Finally, Agent 2 is moving towards its (yellow)
destination.

3. Taxonomy

We consider two types of agents: those that ignore D and those that heed D during their reasoning
process. Agents that attempt to perform the user’s assigned tasks without any other consideration
are called Compliant agents (Coman & Muñoz-Avila, 2014). In our work, Compliant agents ignore
D, and therefore generate and execute a plan based solely on the HTN domain Σ. Among those that
heed D, we distinguish between ways these agents respond to D-discrepancies (see Table 1).

The first row is for agents that test whether a discrepancy exists in the current state s (we call
this a D-discrepancy), such as when an agent finds itself in a red zone cell. Let s be a collection
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Table 1: Taxonomy of D-discrepancies

Type Example Formal description

Immediate D-discrepancy in red zone δ(s) = True

Projected D-discrepancy
will reach
red zone

δ(πn(s)) = True

Adaptive D-discrepancy
turn to avoid

red zone
δ(π′

n(s)) = False
and π′(s) ⊨ g

of grounded predicates. For example, s = {at(5, (10, 11)), red(7, (10, 11), 2)} indicates that agent
5 is located in cell (10, 11). It also indicates that the red zone number 7’s is at (10, 11) and the
redzone is of size 2 × 2. Let D be a collection of 10 directives, δ0, . . . , δ9, one per red zone. If
δi(s) = True, it means at least one of the agents finds itself inside red zone i in state s. Therefore,
in this situation, δ7(s) = True because agent 5 is inside redzone 7.

The second row in Table 1 is for agents that project whether a D-discrepancy will occur in a
future state. We call this a projected D-discrepancy. Let s again be a set of grounded predicates.
Let πn = (a1a2 . . . an) be the next n actions to be executed by the agent. Let πn(s) be the state
resulting from applying the next n actions, starting in state s:

πn(s) =

{
a1(s) if n = 1

an(s
′) if n > 1 and s′ = πn−1(s)

(1)

In this case, a projected D-discrepancy occurs if, for n ≥ 1, δ(πn(s)) = True.
The third case, Adaptive D-discrepancy, refers to an agent that generates a plan π′, a repair of

plan π, such that there is no projected D-discrepancy during the execution of its next n actions and
π′ achieves a user-given goal g. This is formalized in the last column of Row 3 in Table 1.

4. HTN Planning

Hierarchical Task Network planning is a planning paradigm in which complex tasks are decom-
posed into simpler tasks until a sequence of so-called primitive tasks is generated (Georgievski &
Aiello, 2015). Each primitive task is achieved by an action; hence, the output of HTN planning is
a sequence of actions π. We use T to denote the collection of all primitive and nonprimitive tasks.
An HTN planning model, Σ, is a collection of actions and methods, which we define next.

An action a defines the usual transition function a : S → S ∪ ∅, where S is the set of all states.
If a(s) = ∅, then a is not applicable in s ∈ S. Otherwise, a(s) ∈ S is the resulting state after
executing action a in s.

A method m is used to decompose a nonprimitive task t. A method m : S × T → T̃ ∪ ∅, where
T̃ is the set of all possible sequences of tasks in T . If m(s, t) = ∅, then m is not applicable in
(s, t). Otherwise, m(s, t) ∈ T̃ is a sequence of tasks. In that case, we say that t is decomposed into
m(s, t).
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To exemplify a method, navigate-distant, let s be the state displayed in Figure 2. navigate-
distant is used to accomplish reach(agent,location) whenever a destination location is at least 2
cells distant from agent. In this state, Agent 0 is currently in a location (x, y). This agent has been
assigned to reach the brown destination location (near the upper left corner). For this particular state,
the navigate-distant method transforms the nonprimitive task reach(0,brown) into two subtasks.
The first is a primitive task up(0), which executes the action moving Agent 0 to (x, y − 1), and
the second task is a recursive call to the nonprimitive task reach(0,brown). Succinctly, navigate-
distant(reach(0,brown)) = (up(0), reach(0,brown)).

To exemplify another method, navigate-close, consider Agent 3, which has been assigned the
green location as its goal. That is, Agent 3 must achieve the nonprimitive task reach(3,green). In
this case, the navigate-close method will decompose the task into a single primitive task right(3),
which (when executed) moves Agent 3 to its goal. Succinctly, navigate-close(s,reach(3,green)) =
(right(3)).

In summary, we described two methods, one for situations when the agent’s destination is at least
two cells away and upwards from the agent location and another one for when the agent’s destination
is adjacent to its current location. But not the other way around. That is, the navigate-distant method
is not applicable for states where the agent is adjacent to the goal location. Similarly, navigate-close
is not applicable in states where the agent is not adjacent to the goal location. Therefore,

navigate-distant(s,reach(3,green)) = ∅
navigate-close(s,reach(0,brown)) = ∅

5. Rebellious Online HTN Planning

Algorithm 1 displays the pseudocode for R-HTN. This pseudocode is based on HTN planning as in
the SHOP system (Nau et al., 1999). The non-underlined parts are the standard SHOP pseudocode
and the underlined parts are our additions.

The R-HTN planning procedure R-HTN(s, t̃) receives as input a state s and a task list t̃ ∈ T̃
(Line 1). It calls RSeekPlan with the same parameters as R-HTN plus an empty list. The empty
list represents the empty plan (i.e., a plan with no actions). RSeekPlan recursively generates the
solution plan π by decomposing t̃ as fgoldollows. If the task list t̃ is empty (i.e., ()), it returns the
empty plan (Line 6). Otherwise, t̃ = (t0, t1, . . . , tn) is a nonempty list of tasks (Line 7). Then there
are two cases:

• (Case 1) if t0 is primitive and its associated action a0 is applicable in s (i.e., a0(s) ̸= ∅; Line
10), then check if repairs are needed and return a task list t̃′ (line 11; we will expand on this
later). If t̃ differs from t̃′, then t̃′ repairs t̃ and planning proceeds recursively with t̃′ (Lines
12 and 13) with π and s unchanged. Otherwise, a0 is executed, resulting in a new state s′

(Line 14). Then planning proceeds recursively with the new state s′, the remaining task list
(t1, . . . , tn), and the plan π augmented with a0 (Line 15).

• (Case 2) if t0 is non-primitive and there is a method m applicable to s and t0 (i.e., m(s, t0) ̸=
∅; Lines 16-18), then continue planning recursively with the same state s and plan π, and the
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Algorithm 1 The R-HTN algorithm

1: procedure R-HTN(s, t̃)
2: return RSeekPlan(s, t̃, ()) ▷ () is the empty plan; a plan with no actions
3: end procedure
4:

5: procedure RSEEKPLAN(s, t̃, π) ▷ π is the plan generated so far
6: if t̃ = () then return () ▷ returns the empty plan
7: let t̃ = (t0, t1, ..., tn)
8: if t0 is primitive then
9: let a0 be the action associated with t0

10: if a0(s) = ∅ then return ∅
11: t̃′ ← RepairTasksIfNeeded(t̃, s, a0)
12: if t̃′ ̸= t̃ then ▷ D-discrepancy occurs
13: return RSEEKPLAN(s, t̃′, π) ▷ recursive call
14: s′ ← execute a0 on s
15: return RSEEKPLAN(s′, (t1, ..., tn), π · (a0)) ▷ recursive call
16: if t0 is compound then
17: for m0 ∈M do ▷ M is the list of all methods
18: if m0(s, t0) ̸= ∅ then
19: let π′ = RSEEKPLAN(s,m0(s, t0) ·(t1, ..., tn), π)
20: if π′ ̸= ∅ then
21: return π′

22: return ∅
23: end procedure
24:

25: procedure REPAIRTASKSIFNEEDED(t̃, s, a0)
26: for δ ∈ D do
27: if δ(s) then ▷ δ is violated in state s

28: return repairTaskListState(δ,s,t̃) ▷ an updated list is returned
29: for δ ∈ D do ▷ only check if no violations in current state s
30: if δ(a0(s)) then ▷ δ is violated in state a(s)

31: return repairTaskListEffect(δ,s,t̃,a0) ▷ an updated list is returned
32: return t̃ ▷ no directives violated; return task list unchanged
33: end procedure

augmented task list m(s, t0) • (t1, ..., tn), where • denotes a concatenation of task lists.2 If
the recursive call returns a non empty plan π′, this is returned (Line 21).

2. i.e., (t0, ..., tn) • (t′0, ..., t′m) = (t0, ..., tn, t
′
0, ..., t

′
m)
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Line 22 is the catch-all case where either t0 is primitive but Case 1 yields no solution or t0 is
compound and Case 2 yields no solution. In either situation the procedure returns ∅, denoting that
no such plan exists.

Online HTN Planning We focus on dynamic environments, where the world state changes as
a result of the agent’s own actions and also as a result of factors independent of the agent’s own
actions. For instance, it may begin to rain in a particular area (and therefore it becomes a red zone)
or it stops raining in another area (and therefore it is no longer a red zone). To respond appropriately
to these situations, R-HTN uses online planning in Line 14. It executes the chosen action a0 and
returns the state s′ observed after executing a0 in the environment (we describe the simulators for
the two domains in Section 6).

The task repair procedure. Lines 25-33 detail the RepairTasksIfNeeded procedure. It receives
the current task list t̃, the current state s and the action to be executed a0 (Line 25). It first checks if a
D-discrepancy exists in current state s (Lines 26 and 27). If so it calls the domain-specific procedure
repairTaskListState, which returns an updated task list (Line 28). If there are no D-discrepancies
in the current state, it checks if any D-discrepancies to the projected state δ(a0(s)) exist (Lines 29
and 30). If so, it calls the domain-specific procedure repairTaskListEffect, which returns an updated
task list. The call to a0(s) does not change the state of the world. This is just standard planning to
compute the projected next state. In R-HTN the only time an action is executed in the environment
is in Line 14. In Section 6, we will describe our task repair procedures for the two task domains.

6. Empirical Evaluation

We conducted an evaluation in which we tested three online HTN planning agents: Compliant,
Nonadaptive and Adaptive, as described in earlier sections. In these experiments, a simulated user
randomly selects the destination locations for each agent to visit.

Our hypotheses are as follows:

• Adaptive will achieve more goals compared to Nonadaptive and Compliant.

• Adaptive and Nonadaptive will incur in no state violations.

We have two domains:

• O-RESCHU. The domain we have discussed so far in the paper. The simulated user never
assigns two or more agents to the same location.

• MONSTER. To make NPCs more realistic, game designers created the idea of NPC align-
ment (Gygax, 1978). NPC alignment refers to personality traits such as "good" or "evil" with
the idea that if the player orders an NPC to perform an action against its alignment (e.g., order
an NPC to steal gold but the NPC has a "good" alignment), the NPC may refuse the order.
MONSTER is a straighforward modification of our O-RESCHU simulation: the red zones
are re-interpreted as monsters and colored locations are reinterpreted as gold locations, each
having 5 gold coins. The (simulated) user sends the NPC agent to these locations to collect
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gold. Following the conventions of many games, an NPC agent collects gold by navigating
to a cell with gold (i.e., there is no explicit action to collect the gold). Once collected, the
location will no longer have any gold. NPCs and monsters each begin with 10 health points
(hps). When a monster and an NPC are in the same cell, they "fight to the death": namely,
we repeatedly roll a die such that with 50% probability the monster loses 1 hp whereas with
50% probability the NPC loses 1 hp. Once either reaches 0 hp, it is eliminated from the game.
If the NPC reaches 0 health, the simulation terminates as there is only one NPC acting per
game. If the monster reaches 0 health, the monster disappears from the game. The NPC
continues with whatever health it has left after the fight. This means that, on average, an NPC
will survive fewer than one fight with a monster, and if it does survive, it will typically have
very little health left, making it unlikely to win a second fight. Monsters do not move but they
can respawn in a different location although never in an NPC’s cell. They can respawn on a
gold location.

6.1 Task Repair

O-RESCHU. Reconsidering the scenario in Figure 2, suppose Agent 3 (which is adjacent to the
green destination location) is instead assigned to navigate to the pink location (i.e., its revised goal).
Again, suppose that the only directive inD is for the agent to avoid any red zone, and that its current
task list is: (down(3), reach(3,pink)).

In this situation, there will be a projected D-discrepancy with n = 1 (i.e., applying π1 =
(down(3)) results in a D-discrepancy). To address this situation, our agent will repair the task
list by considering the current state s and goal g. We denote by A(s) the alternative actions
applicable in s such that applying them does not yield a D-discrepancy. In this case, A(s) =
{up(3), left(3), right(3)}. The alternative selected action a is one satisfying:

a = mina∈A(s)dist(a(s), g), (2)

where dist is the distance function (in this case we use Manhattan distance) and min is the minimum.
In this scenario, a = left(3) is selected because it moves Agent 3 to the closest location to the

pink destination, in comparison to the two alternatives. Hence, Agent 3 will modify the task list by
replacing down(3) with left(3). This yields a modified task list: (left(3), reach(3,pink)). Our agent
will then continue executing the online HTN planning process, moving Agent 3 to the left once and
then recursively performing online planning with reach(3,pink).

Because this agent is planning online, it will appropriately respond to new contingencies such
as when a red zone spawns on its path. Analogously, if the red zone that caused a task repair
disappears, then the agent will consider the newly viable path to its goal.

In our scenarios, the agent is never "boxed" in red zones. Red zones are always squares and
placed randomly on the map but such that there is a gap between them. This means that the agent
can always navigate between red zones to reach any location. In other task domains where the agent
can be boxed in, no matter which alternative it takes, then A(s) would be defined as the set of all
first actions in feasible plans for reaching g. If A(s) is empty, then our agent will cease its execution.
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MONSTER. It has only one directive, δmonster(s), which is true if it finds itself in the same cell
as a monster. Since the agent checks if the next action will result in a D-discrepancy (Line 30 of
the algorithm) and monsters never spawn in the same cell as an NPC, it means that the our Adaptive
NPC agent will know in advance if it will encounter a monster along its path to collect gold. Our
Adaptive NPC agent exhibits a cowardly trait because it avoids fights with monsters. That is, it will
modify its task list in the exact same manner as task repair in O-RESCHU (i.e., it will move around
the monster). If the assigned gold location has a monster, the agent will abandon its user-assigned
task, resulting in rebellion but consistent with its cowardly personality trait.

6.2 Task Domain Map and Settings.

O-RESCHU. Our map is a 2D grid of 20 × 20 cells. It contains 10 red zones of size 2 × 2, 7
(colored) destination locations (i.e., cells), and 1 initial start location for all 5 agents. These settings
are illustrated in Figures 1 and 2. The destination locations and start location spawn randomly at the
beginning of each episode and remain fixed throughout the episode. Red zones respawn with a fixed
probability. In our experiments, we use the probabilities: 0 (i.e., red zones remain fixed throughout
the episode), 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 (i.e., red zones will relocate 50% of the time,
therefore once every two time ticks on average). Red zones never spawn on top of agents, although
they may spawn on top of destination locations. Agents cannot move diagonally. Agents may stay
in their current location without moving.

MONSTER. The map has the same dimensions and number of red zones (which here are mon-
sters) as O-RESCHU, and colored locations (which contain gold). Monsters spawn with the same
probability setting as in O-RESCHU. The only difference is that there is a single agent acting in the
grid.

For both domains, for each red zone (or monster) respawn probability and each of the 3 agents,
we ran 100 episodes and calculated the average of the dependent measures, which we describe next.

6.3 Dependent Measures.

Common for both domains. The first is a binary measure indicating whether the agent achieved
its goal (i.e., it reached its assigned location). The second is a counter of how manyD-discrepancies
the agent incurred.

O-RESCHU. For this task domain, we also measure the number of penalty points an agent incurs.
Each time an agent moves one step within non-red cells it incurs a penalty of one point. Each time
it instead moves one step into, out from, or between red cells it incurs a penalty of 20 points. At
the start of an episode, each agent is allotted 38 points, representing the maximum number of steps
needed to navigate between any two locations in the map, if following a shortest path. An agent
ceases movement in an episode whenever it has 0 remaining points.

MONSTER. In each episode, the simulated user will assign a gold location, followed by a second
location after the agent reaches the first location or abandons trying to reach it. For each game, we
compute two additional dependent measures. The first is the total gold collected, which is a number
between 0 and 35 (e.g., if the gold locations are clustered together along a shortest path to its
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destination such that the agent visits them all). The second measure is the number of agent deaths
(either 0 or 1).

6.4 Results O-RESCHU

(a) The horizontal axis denotes the probability that
the red zones spawn (with each tick). The vertical
axis denotes the number of goals achieved, averaged
over 100 episodes per agent type.

(b) The horizontal axis denotes the probability that
the red zones spawn (with each tick). The vertical
axis denotes the number of penalty points incurred,
averaged over 100 episodes per agent type.

Figure 3: Performance measures as a function of red zone spawn probability.

O-RESCHU’s results are displayed in Figures 3a, 3b, and 4. In each the x-axis denotes the
probabilities that red zones will be respawned (from 0% to 50%) in each time tick. To account for
randomness each data point is the average over 100 runs.

Experimental Results - Goals Achieved: As displayed in Figure 3a, the Adaptive agents achieve
the highest average number of goals per episode, which varies between 4 and 4.5. The maximum
number of goals is 5 (i.e., one per agent). There are two reasons why, on average, these never reach 5
for the Adaptive agents. First, the red zone will sometimes spawn on top of an assigned destination
location, preventing such agents from reaching them (i.e., to not violate D). Second, an agent may
run out of points while navigating around red zones. Compliant agents achieve an average of 2
to 3 goals per episode. This number increases with red zone spawn frequency because red zones
sometimes move out of an agent’s path to a goal location. Also, Compliant agents can move to
a destination location that is inside a red zone. Finally, Nonadaptive agents achieve an average of
2-2.5 goals per episode. Nonadaptive agents achieve fewer goals than Compliant agents because the
former always abandons a goal if moving will result in a violation whereas the latter will still move
and sometimes still reach the goal. This experiment confirms our hypothesis that Adaptive achieves
more goals than Nonadaptive and Compliant.

Experimental Results - Penalty Points Incurred: Figure 3b displays the average number of
penalty points incurred. Compliant agents incur the largest average number of penalty points (140-
160), almost doubling that of the Adaptive agents. These averages trend slightly downwards for
Compliant agents because red zones sometimes move out of their planned path. Nonadaptive agents
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incur fewer penalty points because they more frequently abandon their goals, as shown in Figure
3a.

Figure 4: The horizontal axis denotes the probability that the red zones spawn (with each tick). The
vertical axis denotes the number of D-discrepancies incurred, averaged over 100 episodes per agent
type.

Experimental Results - State Violations Incurred: Figure 4 displays the average number of D-
discrepancies incurred per agent type. Adaptive and Nonadaptive agents never incur aD-discrepancy.
In contrast, Compliant agents incur an average of 4-6 state violations per episode. Again, this de-
creases as the probability of respawning increases because paths clear of red zones become available
more frequently as red zones spawn (and de-spawn) with more frequency. This experiment confirms
our hypothesis that Adaptive and Nonadaptive incur in no state violations.

Overall, Adaptive agents achieve (on average) more goals compared to the other agents, while
incurring no state violations and incurring approximately only half of the number of penalty points
incurred by Compliant agents. The Nonadaptive agents incur the fewest penalty points but also
achieve fewer goals compared to the other agents.

6.5 Empirical Results - Monster

Experimental Results: Figure 5a displays the average number of goals achieved by each agent.
The adaptive agent (i.e., Coward) achieves the highest average; the Compliant achieves slightly
more goals than the Nonadaptive agent. This experiment confirms our hypothesis that Adaptive
achieves more goals than Nonadaptive and Compliant. Similarly, as shown in Figure 5b, the adap-
tive agent collects more gold than the Compliant and Nonadaptive agents, which have similar per-
formance on this measure. The reason for this difference between Nonadaptive and Adaptive, for
both measures, goals achieved and gold collected, is that Nonadaptive agents stop when they en-
counter any monster. In contrast Adaptive agents will seek to go around any monster unless it is
located on top of the gold location. The difference between Compliant and Adaptive is due to Com-
pliant dying more frequently, as it confronts any monster on its path to its assigned gold location,
as illustrated in Figure 6a, which shows that Compliant dies in more than half of the episodes. This
is also illustrated in Figure 6b, which shows that Compliant has close to one D-discrepancy per
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(a) The horizontal axis denotes the probability that
the monsters spawn (with each tick). The vertical
axis denotes the number of goals achieved, averaged
over 100 episodes per agent type.

(b) The horizontal axis denotes the probability that
the monsters spawn (with each tick). The vertical
axis denotes the total gold collected, averaged over
100 episodes per agent type.

Figure 5: Performance measures as a function of monster spawn probability.

episode. In contrast, Adaptive and Nonadaptive never incur in D-discrepancies, thereby confirming
our experimental hypothesis that these two agents do not result in state violations.

(a) The horizontal axis denotes the probability that
the monsters spawn (with each tick). The vertical
axis denotes the number of agents deaths, averaged
over 100 episodes per agent type.

(b) The horizontal axis denotes the probability that
the monsters spawn (with each tick). The vertical
axis denotes the number of state violations, averaged
over 100 episodes per agent type.

Figure 6: Performance measures as a function of monster spawn probability.

Overall, we observe from the measures that the agents’ performance is consistent with their
traits. The adaptive (Coward) agent never dies and collects the most gold (though it does not always
achieve its assigned goal). The nonadaptive agent also never dies, but since encountering any mon-
ster will result in the agent forgoing achieving its goal, it collects less gold. Finally, the Compliant
agent will "mindlessly" pursue its assigned gold, thereby dying more frequently, and as a result
collects less gold than the adaptive agent.
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7. Related Work

Our model of rebellion can be connected to theories of human cognition. In human factors research,
intelligent disobedience (Chaleff, 2015) describes how operators or assistants are trained to override
commands when they conflict with safety rules. A well-known example is guide dogs, which are
trained to refuse an owner’s command if obeying would place the owner in danger. For instance, the
dog will stop and refuse to move forward at a busy intersection. Similarly, in the military domain,
a disciplined soldier should refuse orders if complying would result in crimes against humanity.
In our work, we endow agents with directives D such that when a user’s commands would result
in a violation, the agents adapt to avoid creating the violation while still aiming to fulfill the user’s
intent. This is analogous to the dog waiting until it is safe to cross the street. Chaleff (2015) refers to
this behavior as “pause and assess”, highlighting the principle that intelligent disobedience involves
deliberation rather than blind obedience.

Psychological models of cognitive control (e.g., conflict monitoring in executive function) ex-
plain how humans detect contradictions between goals and constraints and engage in alternative
planning (Greene et al., 2001). An illustrative case is the moral dilemma faced by an autonomous
vehicle with one passenger on board; it must choose between deviating from its route, potentially
harming its passenger, or continuing and potentially harming multiple pedestrians at an intersection.
In our context, this corresponds to situations where two or more directives in D are simultaneously
triggered, requiring the agent to prioritize among competing norms or ethical constraints. In the
current version of our work, the agent resolves such conflicts by selecting one directive arbitrarily
(Lines 28 and 31). In future work, we will explore mechanisms for resolving directive conflicts in a
more principled manner, drawing inspiration from models of human moral reasoning.

The term rebel agents was coined by Coman and Muñoz-Avila (2014). That work was motivated
by digital games and the need for NPCs that behave in more sensible ways when receiving a player’s
commands. It used the idea of a drama manager (Yu & Riedl, 2013) that assesses whether the agent’s
motivations conflict with the user’s commands. For instance, the user might command the agent to
get an item by stealing it but this contradicts with the agent’s "lawful good" alignment (Gygax
(1978); page 23). Coman and Muñoz-Avila (2014) also established the basis for the rebel agents
where the agent checks the results of planning versus the agent’s motivations. In this paper, we
instead formalized the ideas of D-discrepancies in the context of online HTN planning. In prior
work, researchers defined rebel agents in the context of goal-driven autonomy (Molineaux et al.,
2010) models of goal reasoning. Hence, when a D-discrepancy occurs, those models generate a
new goal. In contrast, our Adaptive agents will still attempt to achieve a goal by adapting the plan
in a manner that does not contradict D (i.e., they will attempt to replan rather than abandoning the
goal). More recently, there has been increased interest in the subject of rebel agents. For a broader
discussion see (Coman & Aha, 2018).

Our work is also related to norms in multi-agent systems (MAS) (Sergot, 2007). Norms are
principles that an agent is expected to abide by when executing actions in an environment. A large
body of work exists on the study of norms for MAS (Savarimuthu & Cranefield, 2011). In our work,
we do not prescribe how D can be generated. Hence, it is conceivable that D captures norms for
a given domain. The only requirement that we have is that D can be tested to determine if it is
violated in a state. In this way, agents can conduct tests for the current or projected states.
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Our work is also related to BDI (belief-desire-intention) models (Georgeff et al., 1999). These
models are designed to monitor and ensure that a plan’s execution fulfills its intent and annotate
alternatives when these intents are not fulfilled. In our work, we use HTNs for plan generation; the
resulting task hierarchies and D perform a similar role during plan generation. For example, the
action down(3) can be explained because the agent is attempting to achieve the task reach(3,pink).
If there is a D-discrepancy, then HTN replanning can be used to revise the plan.

Our online HTN planning approach is consistent with the actor’s view of planning paradigm
(Ghallab et al., 2014). This paradigm advocates using HTN planning to interleave planning and
execution precisely for the kinds of environments we use in this paper where changing state dy-
namics may require an agent to perform replanning during plan execution. As an example, in Yuan
et al. (2022), HTN plan generation is interleaved with plan execution resulting in task modifications
when actions become inapplicable as a result of the dynamic changes in the environment. But that
work does not consider directives, so the task modifications are due to changing conditions in the
environment as opposed to a violation of D. Another difference is that that work does not perform
lookahead to consider violations in future states.

8. Conclusions

We presented rebellious online HTN planning agents, which are agents capable of reasoning with
directives D. Directives enable these agents to assess if state discrepancies will occur, and replan
as needed. We described how HTN planning agents can use D to prevent such discrepancies from
arising for safety domains and how can they use D to endow NPCs with personality traits. From
experiments we conducted using the O-RESCHU task domain, we confirmed that these agents never
violate D. Furthermore, we explored two variants: Nonadaptive and Adaptive, where the latter (as
needed) dynamically modifies its task list to generate alternative plans that do not violate D. We
found that Adaptive agents achieve most of their assigned goals with lower costs (i.e., number of
penalty points) compared to Compliant agents. The Nonadaptive agents incur the least cost but also
achieve the fewest number of goals. For the MONSTER domain, we observed similar results, with
the adaptive agent collecting more gold without ever dying, while the Nonadaptive agent collects
less gold, although also never dying, and the compliant agent dying frequently and also collecting
less gold.

Potential future work includes the study of agents that look ahead before executing a larger
number of actions. This is needed in domains where an agent may find itself unable to backtrack.
For instance, in a variant of the RESCHU domain an agent may not be permitted to retrace its
steps and red zones may spawn in overlapping areas. In this case, an agent will need to generate
n steps ahead, πn (with n ≥ 2), to check for possible D-discrepancies without executing the ac-
tions. Another potential future work direction is to consider D with numeric fluents (e.g., gasoline
consumption) and agents that can explicitly reason about their associated D-discrepancies. We will
also study nondeterminism in this context, where actions have more than one possible outcome. For
example, due to wind conditions, when executing the action "up" from a location in cell (x, y), an
agent may find itself in location (x, y − 1) or (x + 1, y − 1). We believe that R-HTN would work
as-is if a potential outcome of the action incurs a D-violation (e.g., if cells (x, y) or (x + 1, y − 1)
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are in a red zone, then the agent will consider alternative actions). However, if the agent needs
to reason with probabilistic outcomes (e.g., where a 95% chance of not violating D is considered
acceptable), then further research will be needed. In this case, the agent has to reason with the
probability of reaching a state where violations occur. Additional future work includes an analysis
of the computational gains of online HTN planning versus linear replanning, through comparisons
involving different solvers in terms of replanning frequency and required computational time.

Another measure worth investigating is the amount of deliberation required to generate rebel-
lious behavior with different types of constraints. For instance, the directive to "avoid red zones"
(due to loss of energy points) can be compiled away as a safety constraint that does not require
exceptional deliberation beyond constraint satisfaction. However, a rebellious behavior would oc-
cur if the UAV concludes that it must navigate through a red zone to avoid a crash. Adaptive
agents represent a first step for reasoning about such situations in the context of intelligent rebel-
lion/disobedience, and future work can address various forms of constraints, such as competing
goals, directives provided by different stakeholders, and ethical prohibitions.

In our current framework, we make no assumptions about the internal representation of direc-
tives. We simply require that each directive δ ∈ D can be evaluated as a Boolean function on a given
state s, returning whether the directive is satisfied or violated. In this sense, directives are treated
as inputs to our R-HTN agent rather than objects that the agent reasons about. Another avenue for
future work is to explore more expressive representations of directives. For example, logic-based
formalisms or norm-based representations could allow the agent to infer higher-level properties,
such as ethical constraints or normative priorities, and to deliberate about trade-offs among compet-
ing directives. Such approaches would also enable the study of directive hierarchies and conflicts,
thereby connecting our work more directly with theories of moral reasoning and normative decision-
making.

Finally, Mirsky et al. (2025) propose three key elements for designing agents that disobey their
users, which are also relevant for our Rebel agents. First, agents should be transparent, providing
explanations for why they are disobeying a command. Second, they should be justifiable, meaning
that the rationale for disobedience is clear and grounded in defensible principles. Third, they should
be controllable, allowing the user to override the agent’s disobedience if desired. A promising
direction for future work is to endow Rebel agents with these three elements, thereby enhancing
their usability and trustworthiness in human-agent interaction.
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